Optimal Day-Ahead Bidding of Electricity Storage using Approximate Dynamic Programming

Nils Loehndorf David Wozabal Stefan Minner

ÖGOR - IHS Workshop
Mathematische Ökonomie und Optimierung in der Energiewirtschaft

September 23, 2010
Vienna
Outline

Dispatch of Electricity Storage

- Optimal dispatch is a stochastic-dynamic decision problem
- Bidding decisions on the day-ahead real-time market
- Decision about storage level
- Risk aversion or price response to avoid excessive use of balancing market

Method

- Stochastic dynamic programming (SDP)
- Instantaneous profit calculated by two stage dynamic stochastic problem
- Sampling based approach
- Solved using Approximate Dynamic Programming using post decision logic

Numerical Results
Decision Process

Inter-day decision process
- Daily decisions
- Optimize storage levels over time
- State transition is a Markov process
- State variables: daily wind production, mean temperatures and weekday
- Approximate Dynamic Programming (ADP)

Intra-day decision problem
- Hourly decisions
- Optimize day-ahead bidding decisions
- Day-ahead & real-time price uncertainty dependent on state
- Stochastic Programming
Decision Process

state = \{\text{day, wind, temperature, reservoir}\}

- **day-ahead price scenarios**
 - submit bids
 - day-ahead market is closed
 - day-ahead price realization
 - real-time price scenarios
 - balancing and storage operation
 - final reservoir level

reservoir level at 100%
reservoir level at 50%
reservoir level at 0%
Bidding Curves

- Bids to day ahead (DA) market are submitted one day in advance
- Bidding curves are piecewise constant
- Random prices \rightarrow random bids \rightarrow random storage levels
- Excess bidding on DA market is balanced on real time (RT) market
Define r_t as the function that maps every vector of price realizations to a final storage state. We write

$$V(S_t, r_t) = \max_{r_{t+1}} \max_{x \in \mathcal{X}} \mathbb{E} \left(\pi(x, r_t, r_{t+1}) + \gamma V(S_{t+1}, r_{t+1}) | S_t \right)$$

$$= \max_{r_{t+1}} \max_{x \in \mathcal{X}} \mathbb{E} \left(\pi(x, r_t, r_{t+1}) | S_t \right) + \gamma \mathbb{E} \left(V(S_{t+1}, r_{t+1}) | S_t \right)$$

$$= \max_{r_{t+1}} R(S_t, r_t, r_{t+1}) + \gamma \mathbb{E} \left(V(S_{t+1}, r_{t+1}) | S_t \right)$$

where π is the instantaneous profit, x is the intraday decision and

$$R(S_t, r_t, r_{t+1}) = \max_{x \in \mathcal{X}} \mathbb{E}(\pi(x, r_t, r_{t+1}) | S_t)$$

Proposition 1. The function $R(.,.,.)$ is concave in r_t and r_{t+1}.

Proposition 2. $V(S_t, .)$ is concave.
Algorithmic Strategy

- Partition the state space into multi-dimensional grid, i.e.

\[
S = \bigcup_k G_k
\]

where the \(G_k \) are the disjoint grid cells.

- Define function \(G(S) \) which maps every state into grid cell

- Approximate \(V(S, .) \) by piecewise linear concave function \(V(G(S), .) \)

- Iteratively update the sampled post decision value function

\[
\bar{V}^r(S_t, r_{t+1}) = \mathbb{E}(V(S_{t+1}, r_{t+1}) \mid S_t)
\]

\[
\bar{V}^r(S_{t-1}, r_t) = \mathbb{E}\left(\max_{r_{t+1}} R(S_t, r_t, r_{t+1}) + \gamma \bar{V}^r(S_t, r_{t+1}) \mid S_{t-1} \right)
\]
Generate a sample of state transitions: $S_1, ..., S_T$

Define a set of initial reservoir levels as breakpoints: $B_1, ..., B_L$

For $t=2$ to T do

Sample price realizations dependent on S_t

For $l=1$ to L do

$$w_{G(S_t), l} \leftarrow \max_{r_t} R(S_t, B_l, r_t) + \gamma \tilde{V}^r(G(S_t), r_t)$$

$$\tilde{V}^r(G(S_{t-1}), B_l) \leftarrow U(w_{G(S_t), l})$$

End

End

Return value function

Expected Profit (in $1,000)$

Reservoir Level (in MWh)
Stochastic Programming Formulation (Intra-Day)

Objective: maximize risk adjusted expected profit

\[
\max \frac{1}{S} \sum_{s=1}^{S} \left(\sum_{h=1}^{24} \left(p_{hs}^d x_{hs}^d - \hat{p}_{hs}^b x_{hs}^b \right) + \gamma \tilde{V}_r (r_{24s}) \right) - \rho \text{CVaR}_\alpha (P)
\]

- **Day-ahead price response:**
 \[
p_{hs}^d = \hat{p}_{hs}^d - \beta_h^d x_{hs}^d
\]

- **Real-time price response:**
 \[
 \bar{p}_{hs}^b = \hat{p}_{hs}^d - \beta_h^d x_{hs}^d + \beta_h^b x_{hs}^b
 \]

Subject to...
- Min./max. capacity constraints (binary)
- Market and reservoir balance equations
- Price dependent, piecewise-constant bidding curves

Symbols:

- \(x_{hs}^d \): realized day-ahead bids
- \(x_{hs}^b \): real-time balancing decisions
- \(r_{hs} \): realized reservoir levels
- \(\gamma \): discount factor
- \(\beta_{h}^{d,b} \): estimated slope coefficients
- \(\hat{p}_{hs}^d \): day-ahead price scenarios
- \(S \): number of day-ahead price scenarios
- \(\text{CVaR}_\alpha (P) \): conditional value at risk

universität wien
Bidding Curve

Piecewise-constant bidding curve:

\[x_{hs}^d = \begin{cases}
 y_{h1} & \text{if } \hat{p}_{hs}^d < q_{h1}^d \\
 \ldots & \\
 y_{hk} & \text{if } q_{hi-1}^d \leq \hat{p}_{hs}^d < q_{hi}^d \\
 \ldots & \\
 y_{hK} & \text{if } \hat{p}_{hs}^d \geq q_{hK}^d
\end{cases} \]

Linear formulation

- Price segments are given by samples
- Equal number of scenarios per price segment
 - price segments with flexible width
 - price segments with equal probability

\[x_{hs}^d : \text{realized day-ahead bid} \]
\[y_{hk} : \text{bidding curve coefficient} \]
\[q_{hi}^d : \text{pre-defined price segment} \]
\[\hat{p}_{hs}^d : \text{day-ahead price scenario} \]
Bounding the Value Function

\[\overline{V}(k, r) \]

- **upper bound**
- **lower bound**

\[w_{k3} \]

\[w_{k2} \]

\[w_{k1} \]

\[u_1 \]

\[u_2 \]

\[u_3 \]

\[r_t \]
PJM Market

- Day ahead market
 - Daily clearing
 - Bidding curves
 - Low volatility
 - High market depth

- Balancing market
 - Intra day trading
 - High volatility
 - Low market depth
Econometric Model

State Transition Model
- Trigonometric regression
- Detrended VAR(1) model → *inter-day state transition*
- Markov process of wind power, temperature and day length

Electricity Price Model
- 48 semi-log models
- Stepwise backward-forward regression
- t-distributed error terms → *intra-day price scenarios*
State Transition Model

Data Sources: PJM Energy Market, Wolfram Mathematica WeatherData
Electricity Price Model

Data Sources: PJM Energy Market, Wolfram Mathematica WeatherData
Value Function Comparison

- **Parameters**
 - 10,000 training iterations
 - 20 day ahead price scenarios for the intraday problem
 - Bidding functions with 10 segments
 - $\gamma = 0.999$, $\rho = 0.05$, 11 breakpoints for value functions

- **Evaluated over 100,000 state transitions**
 - Simulate intra-day prices scenarios
 - Execute bids based on the value function
 - Evaluate decision
 - Calculate average profit

- **Lower Bound**: deterministic optimization based on average prices
Benchmark Policies

- Clairvoyant: future state transitions and prices are known
- Parametric policy

Optimal parameters found with CMA-ES optimizer (Hansen 2006)
Result: Value Function Comparison

The graph compares different value functions across varying reservoir-capacity ratios. It illustrates the performance of:

- **Single Value Function**
- **Perfect Foresight**
- **Fixed-Spread Policy**
- **(7x3x3) Value Function**
- **(7x6x6) Value Function**

The y-axis represents the percentage from the lower bound, and the x-axis shows the reservoir-capacity ratio. The graph visually captures how each function varies with respect to the ratio.
Approximation Quality

Number of breakpoints for approximation

<table>
<thead>
<tr>
<th>Iterations</th>
<th>3</th>
<th>5</th>
<th>11</th>
<th>21</th>
<th>52</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>22.7</td>
<td>13.4</td>
<td>1.8</td>
<td>0.5</td>
<td>0.01</td>
</tr>
<tr>
<td>1000</td>
<td>18.6</td>
<td>9.6</td>
<td>1.1</td>
<td>0.3</td>
<td>0.0004</td>
</tr>
<tr>
<td>10000</td>
<td>16.7</td>
<td>6.9</td>
<td>0.8</td>
<td>0.2</td>
<td>0.003</td>
</tr>
</tbody>
</table>

Maximal relative differences between upper and lower bound
Convergence Speed

% from upper bound

no. of iterations

single value function
(7x3x3) value function
(7x6x6) value function
Balancing: Price Response vs Risk Measure

- w/o price response
- linear price response with $\beta_d^h = \beta_b^h > 0$
- linear price response with $\beta_d^h = 0, \beta_b^h > 0$
Conclusion

Model, Method & Results

- We solve a complex stochastic-dynamic decision process
 - Training a value function with ADP methods
 - Using a stochastic program as immediate profit function
- Applied the model to the PJM market of 2009
 - Diminishing returns to sophistication for value function approximation
 - ADP better than simple heuristics and deterministic approaches
 - Need risk measure or price response to obtain realistic bids on the RT market

Future Work

- Multiple (connected) storage facilities
- More careful estimation of price response function on the real time market
- Application to other markets (EEX, Nordpool)
References

Bidding Curve, 11h