

•The computabel general equilibrium (CGE) model provides a •The model consists of a top down macroeconomic part and a bottom up partial detailed assessment of developments of macroeconomic equilibrium part that depicts the electricity sector in detail. Demand for energy is parameters as model results. It was used in applications generated in the top down part, the prices and the technology mix are determined regarding different issues for Austrian ministries. in the bottom up part; the two parts are solved together in an integrated fashion.

Bottom up: Electricity sector:	Top down: Pro		Product	roduction sectors:			Agents in the model:		
 Technologies: Renewables: (subsidised) Hydro, Biomass, Wind, Solar/Photovoltaic Fossil: Gas, Coal, Oil 	Sector 1 Output	•••	Sector i	•••	Sector 12 Intermediate		Government Agent	Representative Agent (Household)	Rest of World Agent
7,000 6,000 5,000 8 P*	Intermediate input		Intermediate input (across sector	s)	input Output		Public consumption	Private consumption	Exports
1,000 - Rent Rent	Imports		Imports		Goods a	n	d products	Labour	
2,000 - Cost Q*	Capital costs	•••	Capital costs		Labour and		capital	and capital income	Imports
0,000 0,500 1,000 1,500 2,000 2,500 3,000 Capacity	Labour costs		Labour costs	;	Labour costs		Collects taxes	Pays taxes	
Cheaper technologies are used first; when the price	Taxes		Taxes		Taxes		Pays transfers	Receives Transfers	

ises, more expensive teermologies enter the market.

Mechanics in each period:	Intertemporal model mechanics (over many periods):						
•Representative Agent maximizes utility from consumption and leisure. He offers capital and labour to the production	Benchmark: ("business as usual") Calibrated Equilibrium over all time periods:	INPUT	 Calibrated quantity reference path (growth, demand, production) Calibrated price reference path (inflation) 				

- sectors (labour + leisure = total time endowment) in return for income to buy products.
- Production sectors produce as much as demanded and as can be sold at current prices.
- Prices are determined by input costs and may change along a model run due to substitution possibilities of firms and agents.
- •In each period, all markets are cleared. •No production activity makes a positive profit.
- •**Taxes** included: Labour tax, mineral oil tax, value added tax, variaous taxes on production, capital tax.

Typical model SCENARIOS:

Typical model RESULTS:

Extensions planned:

•Political: tax reforms, subsidies

•Environmental: change in resource capacities •Economic: rise of oil price, decrease in investments

•Sectoral output levels, GDP Public and private consumption levels •Foreign trade •Set of relative **price** levels for all goods • Mix of used **technologies** and their market prices

• A detailed traffic sector: household mobility behaviour More detail in the electricity sector Households decomposition regarding urban, rural and income differences

?) Decomposition of top-down and bottom-up ?) Framework for an iterative micro-macro link