

DEFINE: Scenario building (WP 4) & Quantification of GHG emission reduction potential of electric mobility (WP 5)

Kick-off-Meeting, Vienna, June 14th/15th

Florian Hacker, Peter Kasten, Öko-Institut e.V.

Oeko - Institut

Oeko-Institut is a leading European research and consultancy institute based in Germany which is working for a sustainable future.

- founded in 1977, non-profit association
- offices in Freiburg, Darmstadt and Berlin
- more than 140 staff, including 90 researchers
- more than 300 national and international projects per year
- clients: European Union, ministries, industrial companies, nongovernmental organisations
- annual turnover: approx. 12 million Euro

Overview of past research projects (2009-2011)

• OPTUM:

 user acceptance, market potential and environmental effects of electric mobility (BEV & PHEV) in Germany by 2030

• Future Fleet:

 accompanying research on integration of EVs in SAP's company fleet

• E-Mobility Berlin:

- accompanying research of the "Smart ed" fleet test in Berlin (in cooperation with Daimler Corp.)
- OPTUM Resources:
 - global impact of electric mobility on availability of rare resources and potential recycling strategies
 - LiBRi:
 - development of recycling strategies for lithium-ion batteries

Current project – E-Mob 2050

- E-Mob 2050:
 - research project (09/2011-09/2013) funded by BMU
- main goals:
 - long term market potential of electric and fuel cell vehicles in Germany until 2050 (including freight & public transport)
 - impact of changes in mobility behaviour and of new mobility services on the market potential of EVs / FCVs
 - consideration of long term development of the German power sector (with a high share of fluctuating renewable energy generation)
 - modelling of the long term interaction of EV use and power generation

What factors determine the environmental benefits of EVs?

- Starting points:
 - EVs cause no direct emissions
 - GHG balance of EVs is determined by source of electricity generation
- Necessary analytical steps:
 - technology development
 - acceptance of EVs
 - mobility behaviour
 - market development of EVs
 - interactions with the power plant fleet
 - electricity demand & GHG emissions

Deriving a market scenario for electric vehicles (AP 4)

- Definition of scenario assumptions
 - e.g. technology development, energy prices
- Maximum potential of electric vehicles
 - Analysis of current usage profiles and mobility patterns
- Acceptance of electric vehicles
 - e.g. user survey data
- Consideration of market development
 - Diffusion of technological innovations in automotive sector
- Market scenario for electric vehicles
 - Determining new vehicle entry for 2010-2030
 - Modelling the passenger car fleet for 2010-2030

Determining the GHG reduction potential of EVs (AP 5)

- Determining the stock of electric vehicles and its structure (PHEV – BEV / small – large)
 - Different market scenarios
- Definition of framework conditions
 - Charging infrastructure etc.
- Determining use pattern of electric vehicles
 - Km travelled, time of operation, location
- Electricity demand in high (hourly?) resolution
 - Different charging scenarios
- GHG reduction potential
 - Km travelled that are substituted by electric vehicles (scenarios)
 - GHG emissions that are related to additional electricity production

Suggested modelling approach

Car stock data	Mobility data	Empirical data		
Car stock model 2010-2030	Maximum potential of electric vehicles	Acceptance of electric vehicles		
 no. of passenger cars power consumption no. of km travelled 	differentiated by - user groups - vehicle segment	differentiated by - user groups - vehicle segment		
	Market development of electric vehicles			
CO ₂ emissions of conventional fuels	Electricity demand	city nodel CO ₂ emissions of electric vehicles		
CO ₂ emissions of car stock				

OPTUM: results of a research project on electric mobility

- Analysis of current vehicle use patterns
- Acceptance of electric vehicles
- OPTUM-market scenario for electric vehicles in Germany
- Impact on electricity production
- Impact of electric vehicles on GHG emissions

Vehicle use pattern and electric mobility

- Data source: "Mobilität in Deutschland" 2008
 - Representative survey on mobility behaviour (each member of 26.000 households) at single data date
- Daily mobility behaviour and compliance with restrictions of electric vehicles
 - Criteria: daily km travelled (⇒ range restriction), parking times and locations (⇒ charging spot available), car segment, no. of cars in household
- Consideration of non-daily mobility behaviour
 - Probability of long trips (above range restriction of fully electric vehicles)

Acceptance of electric vehicle: Conjoint task

Wenn das Ihre einzigen Optionen sind, welches Fahrzeug wählen Sie?

0%

Motor	Verbrennungsmotor	Plug-In-Hybrid	Elektromotor
Leistung	120 kW/ 165 PS	120 kW/ 165 PS	90 kW/ 120 PS
co ₂	100 g/km	50 g/km	5 g/km
Anschaffungskosten	24.000€	29.000 €	35.0 <mark>00 €</mark>
Kraftstoffkosten	12 €/100 km	8 €/100 km	4 €/100 km
Reichweite pro Ladung			200 km
Ladedauer			8 Stunden
Privilegien			Kostenfreie für Elektroautos <mark>reservie</mark> rte Parkplätze in Innenstädten
	\bigcirc	\bigcirc	\bigcirc

Mit Blick auf das, was Sie über den Automarkt wissen: Würden Sie dieses Fahrzeug, das Sie hier ausgesucht haben, tatsächlich kaufen?

Weiter

100%

Market simulation 2020 (conjoint analysis)

www.oeko.de

Source: OPTUM 2011

OPTUM-market scenario for electric vehicles

Electricity production for electric vehicles

Potential impacts of additional electricity demand from electric vehicles on the power sector in 2030:

Development of km travelled by mode

Source: OPTUM 2011

OPTUM-market scenario: emission impact of electric vehicles

Open questions for discussion

- Technology database & framework conditions:
 - Common understanding of technology development (AT, PL, D)
 - Development of consistent assumptions on framework conditions (⇒ scenarios) requires early coordination among partners
- Modelling approach (scenario building):
 - Availability of data mobility and acceptance survey data (AT, PL, D)
 - Development of a common methodological proceeding (or different approaches?)
- GHG emissions of electricity generation for EVs:
 - Electricity mix versus marginal electricity generation (
 attributional or consequential approach?)
- System bounderies:
 - Focus on cars only or consideration of entire road transport?