Ho do Routine Tasks and Offshorability Influence Unemployment Duration and Subsequent Job Quality

> Bernhard Schmidpeter ¹ Rudolf Winter-Ebmer ²

¹ESRC Research Centre on Micro-Social Change, Essex

²JKU, Linz and IHS, Vienna, CEPR and IZA

Vienna

- Increasing public concern about job instability, especially among those with 'ordinary' skills.
- Workers in middle-skill occupations are hardest hit during economic downturns (Jaimovich and Siu, 2014).
- Loss of routine jobs has been documented for numerous countries (e.g. Acemoglu and Autor, 2011; Dustmann et al., 2009; Goos et al., 2009).
- Task requirements in previous employment might affect job search.
- Active labor market policy can be used to ameliorate problems of routine workers.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- Investigates the effect of previous job content on the individual transition rates from unemployment to employment.
- Studies, if previous task inputs have an effect on future match quality of unemployed workers.
- Takes explicitly labor market policies and unobserved heterogeneity into account.
- Assesses if unemployment training can mitigate the effect of a changing working environment.

- Routine job content reduces the transition rate into employment.
- Routine job content reduces significantly the probability of being employed in better or equal paying jobs.
- Routine job content is positively related with receiving unemployment training.
- Training has positive effect on hazard into jobs and can also ameliorate some of the disadvantages

- (ASSD data): Administrative data from Social Security and Employment Office, covering the universe of Austrian workers and containing daily labor market status.
- Unemployment duration observed up to 2 years and information about training measures.
- All unemployment entries during 2000-2004 from male and female workers between 20 and 60 years:
 - Excluding spells from tourism, construction and public services.
 - ► Excluding individuals with highly irregular U-E patterns (no. of unemployment spells ≥ 15).
- Random draw of 70,000 individuals from this pool.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- We calculate routine task index following Autor and Dorn (2013)
- Offshorability according to Blinder and Krueger (2013)
- Can be linked via ISCO code to Austrian unemployment sample.

• Define three task groups:

routine cognitive/manual, non-routine manual, abstract.

- Definition of groups follows closely Spitz-Oener (2006).
- Calculate the index for occupation *o* as:

$$\textit{RTI}_\textit{o} = \textit{In}\left(rac{\textit{TI}^{\textit{Routine}}}{\textit{TI}^{\textit{Abstract}} + \textit{TI}^{\textit{NR Manual}}}
ight)$$

- Index is increasing in the relative importance of routine tasks.
- Analysis is based on 240 occupations (ISCO-88, 4-digit level) and index is based on 25 tasks.

Tasks

Non-Routine Cognitive & Interactive

Analyzing, Planning, Programming, Buying, Advertising, Teaching, Using and Interpreting Law/ Prescriptions, Instructing & Supervising, Care-Taking, Entertaining, Organizing

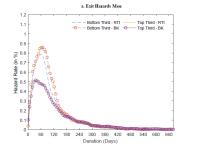
Non-Routine Manual

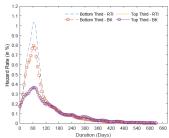
Gardening& Breeding, Repairing, Building & Installing, Restoring, Driving, Guarding, Cleaning & Disposing, Accommodating

Routine Cognitive

Paper Work, Calculating, Book Keeping

Routine Manual

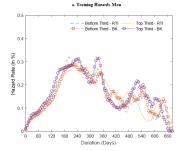

Equipping Machines, Handling Machines, Producing

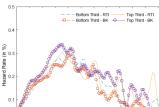

	Men	Women
Individuals & Spells		
Individuals	35,000	35,000
No. of Spells	1.95	2.08
Outflow & Training		
Outflow	86.80%	85.71%
to New Job	61.37%	53.82%
to Out of Labor Force	27.27%	33.57%
Training Received	14.83%	20.22%
Pers. Characteristics		
Age	43.18	42.83
Non-Austrian	18.37%	17.04%
at most Com. Schooling	17.74%	29.41%
Apprenticeship/ High-School	62.77%	51.84%
Matura/ University	19.49%	18.75%
Children	44.85%	63.34%
Married	40.79%	45.26%
Divorce	10.97%	15.76%
Others	48.24%	38.98%
Last Employment		
Tenure in Last Job (Days)	375.64	394.11
Daily Wage in Last Job (Euros)	76.74	49.83
Access to Extended Benefits	50.40%	41.79%
Inflow Year		
Year 2012	55.79	52.03
Year 2013	44.21	47.97

æ

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

Empirical Transition Rates– Exit





イロト イヨト イヨト イヨト

b. Exit Hazards Women

Empirical Transition Rates- Training

120 180 240 300 360 420

Duration (Davs)

イロト イヨト イヨト イヨト

b. Training Hazards Women

BS-RWE (MiSoC)

Job Content and Unemployment

0 60

September 2017 11 / 2

660

480 540 600

- Training may compensate for problems of routine workers, but is not strictly exogenous.
- We jointly model selection into training and unemployment duration using the 'Timing-of-Events' Approach (Abbring and van den Berg, 2003)
- Identification: no-anticipation condition
 - Exact beginning of training cannot be anticipated by job-searchers
- Approach is popular in the policy evaluation literature (van den Berg et al, 2004; Abbring et al., 2005; Richardson and van den Berg, 2013).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- We assume that the exit and treatment transition rates have a multivariate-proportional hazard form.
- The exit rates are modeled as

 $\theta_{E_s}(T|x,\nu_{E_s},D) = \lambda_{E_s}(T)exp(x'\beta_{E_s} + \gamma_{E_s}RTI + \delta_s(x)\mathbb{1}(T > D) + \nu_{E_s})$

- The transition into training is modeled as $\theta_P(D|x, \nu_P) = \lambda_P(D)exp(x'\beta_P + \gamma_PRTI + \nu_P)$
- We allow δ_s(x) to depend on covariates (Richardson and van den Berg, 2013): heterogeneity in training effect.
- We assume distribution of {ν_{Es}, ν_P} to be unknown and approximate it by means of a discrete distribution.

3

Likelihood Function

- We imposes that an individual has the same heterogeneity term across unemployment spells.
- The likelihood function is defined as

$$L = \sum_{i=1}^{N} \log \left\{ \sum_{m=1}^{M} p_m \prod_{j=1}^{J_i} \prod_{s=1}^{S} \theta_{E_s} (T_{ij} | x_{ij}, \nu_{E_s}^m, D_{ij})^{\Delta_{ij,E_s}} \exp\left(-\int_0^{T_{ij}} \theta_{E_s} (T_{ij} | x_i, \nu_{E}^m, D_{ij})\right) \\ \theta_P (D_{ij} | x_{ij}, \nu_P^m)^{\Delta_{ij,P}} \exp\left(-\int_0^{D_{ij}} \theta_P (D_{ij} | x_{ij}, \nu_P^m)\right) \right\}$$

- Maximization procedure follows suggestions of Gaure et al. (2007).
- Model with the lowest Akaike-Information Criterion is chosen.

A (10) A (10)

		Male		Female				
	Treatment hazard	Employment hazard	Out-of-Labor Force hazard	Treatment hazard	Employment hazard	Out-of-Labor Force hazard		
	θ_{Training}	$\theta_{Employment}$	$\theta_{\text{Out-of-Labor Force}}$	θ_{Training}	$\theta_{Employment}$	$\theta_{\text{Out-of-Labor Force}}$		
Panel A: Occ. Require	nents							
γ^{RTI}	0.041 (0.017,)	-0.067 (0.009,)	-0.017 (0.012,)	0.191 (0.017,)	-0.362 (0.014,)	0.00 (0.012,)		
γ^{OFF}	0.101 (0.019,)	-0.245 (0.012,)	0.039 (0.014,)	0.084 (0.017,)	-0.265 (0.015,)	0.047 (0.012,)		
γ^{RTIxOFF}	-0.065 (0.014,)	0.133 (0.008,)	-0.020 (0.009,)	-0.088 (0.011,)	0.223 (0.010,)	-0.018 (0.008,)		
Panel B: Training								
δ		0.415 (0.038,)	0.321 (0.040,)		0.888 (0.040,)	0.281 (0.034,)		
Unobs. Heterogeneity Control Variables Log-Likelihood	Yes Yes -35,386.29			Yes Yes -44,080.61				

Standard errors are reported in parentheses. Model contains control variables and unobserved heterogeneity with seven mass points. In total, 98 parameters were estimated

Can ALMP Reduce Disadvantage of Routine and Offshoring Workers?

- Estimated treatment effect not necessarily homogeneous.
- Employment officer may take previous job content into account when assigning training.
- Gains from training might be related to previous job content.
- · We model the training effect as

 $\delta(\mathbf{x}) = \delta + \psi_{\delta} RTI + \rho_{\delta} OFF.$

Model (II) Results for Heterogeneous Treatment Effects

		Male		Female			
	Treatment hazard	rd hazard	Out-of-Labor Force hazard	Treatment hazard	Employment hazard	Out-of-Labor Ford hazard	
	θ_{Training}	$\theta_{Employment}$	hetaOut-of-Labor Force	θ_{Training}	$\theta_{Employment}$	θ Out-of-Labor Force	
Paenl A: Occ. Requirer	ments						
γ^{RTI}	0.045 (0.017,)	-0.066 (0.009,)	-0.017 (0.012,)	0.192 (0.018,)	-0.375 (0.015,)	0.000 (0.012,9)	
γ^{OFF}	0.100 (0.019,)	-0.251 (0.012,)	0.041 (0.014,)	0.083 (0.017,)	-0.273 (0.015,)	0.043 (0.013,)	
γ^{RTIxOFF}	-0.065 (0.014,)	0.135 (0.008,)	-0.021 (0.009,)	-0.089 (0.012,)	0.219 (0.001,)	-0.0162 (0.008,)	
Panel B: Training							
δ		0.425 (0.038,)	0.312 (0.040,)		0.871 (0.040,)	0.282 (0.034,)	
β_{δ}^{RTI}		-0.025 (0.028,)	0.024 (0.029,)		0.138 (0.027,)	-0.018 (0.024,)	
β_{δ}^{BK}		0.072 (0.029,)	-0.028 (0.029,)		0.078 (0.027,4)	0.023 (0.023,)	
Unobs. Heterogeneity Control Variables	Yes Yes			Yes Yes			
Log-Likelihood	-35,355.59			-43,986.88			

Standard errors are reported in parentheses. Model contains control variables and unobserved heterogeneity with a total of seven mass points. In total, 102 parameters were estimated.

- So far we have not taken re-employment quality into account.
- High-Routine worker who find a new job might be employed in worse matches than before.
- We calculate two variations
 - Duration of the new match after unempmloyment; simple addition to the hazard rate model
 - Wage of the new job (model of Donald et al. (2000): cumulative distribution function of wages can be modeled as a duration hazard

< 🗇 🕨

.

Model (III) Results including Post-Unemployment Job Duration

	Male				Female				
-	Treatment hazard θ _{Training}	Employment hazard θ _{Employment}	Out-of-Labor Force hazard ⁰ Out-of-Labor Force	Duration New Job hazard ⁰ New Job	Treatment hazard θ _{Training}	Employment hazard θ _{Employment}	Out-of-Labor Force hazard ^θ Out-of-Labor Force	Duration New Job hazard ^θ New Job	
Panel A: Occ. Requirer	nents								
γ^{RTI}	0.043 (0.016,)	-0.068 (0.009,)	-0.016 (0.011,)	0.032 (0.011,)	0.167 (0.017,)	-0.312 (0.014,)	-0.013 (0.012,)	-0.125 (0.014,)	
γ^{OFF}	0.096 (0.019,)	-0.252 (0.012,)	0.040 (0.013,)	-0.080 (0.014,)	0.073 (0.016,)	-0.224 (0.014,)	0.035 (0.011,)	-0.187 (0.015,)	
γ^{RTIxOFF}	-0.061 (0.013,)	0.135 (0.008,)	-0.018 (0.009,)	-0.004 (0.010,)	-0.077 (0.011,)	0.194 (0.009,)	-0.009 (0.008,)	0.098 (0.010,)	
Panel B: Training									
δ		0.393 (0.037,)	0.338 (0.039,)	0.237 (0.047,)		0.810 (0.037,)	0.238 (0.033,)	-0.065 (0.049,)	
Unobs. Heterogeneity Control Variables Log-Likelihood	Yes Yes -49,302.96				Yes Yes -54,122.42				

Standard errors are reported in parentheses. Model contains control variables and unobserved heterogeneity with seven mass points. In total, 129 parameters were estimated.

Model (IV) Results including Post-Unemployment Wage

			Male		Female				
	Treatment hazard	Employment hazard	Out-of-Labor Force hazard	Wage	Treatment hazard	Employment hazard	Out-of-Labor Force hazard	Wage	
	θ_{Training}	$\theta_{Employment}$	$\theta_{\text{Out-of-Labor Force}}$	θ_{ω}	θ_{Training}	$\theta_{Employment}$	$\theta_{\text{Out-of-Labor Force}}$	θ_{ω}	
Panel A: Occ. Require	ments								
γ^{RTI}	0.043 (0.016,)	-0.067 (0.009,)	-0.015 (0.011,)	0.040 (0.008,)	0.175 (0.017,)	-0.306 (0.013,)	-0.014 (0.012,)	0.024 (0.011,)	
γ^{OFF}	0.098 (0.019,)	-0.238 (0.012,)	0.038 (0.013,)	-0.095 (0.011,)	0.071 (0.016,)	-0.233 (0.013,)	0.041 (0.012,)	-0.098 (0.012,)	
γ^{RTIxOFF}	-0.062 (0.013,)	0.127 (0.008,)	-0.019 (0.009,)	0.093 (0.007,)	-0.077 (0.011,)	0.190 (0.009,)	-0.011 (0.008,)	0.034 (0.008,)	
Panel B: Training									
δ		0.398 (0.036,)	0.343 (0.040,)	0.329 (0.033,)		0.815 (0.037,)	0.281 (0.033,)	0.152 (0.036,)	
Unobs. Heterogeneity Control Variables Log-Likelihood	Yes Yes -41,002.15				Yes Yes -57,053.38				

Standard errors are reported in parentheses. Model contains control variables and unobserved heterogeneity with seven mass points. In total, 129 parameters were estimated.

- High-Routine job content and risk of offshorability increase unemployment duration.
- ALMP in general is increasing the hazard out of unemployment and – in three of four cases – it can also reduce unemployment duration more for workers with routinisation or offshorability handicaps.
- Results on new job stability and wages a bit mixed.