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Abstract

The present paper investigates the distribution quantile for integrated

portfolio returns that follow a general class of multivariate stochastic volatil-

ity model. We propose a non-parametric quantile estimate that incorporates

the rate with which the true quantile diverges as the integration horizon

expands. The asymptotic normality established for the estimate enables

us to construct the confidence interval for the true quantile. Monte Carlo

experiments are conducted to demonstrate both the consistency and the

advantages of our approach. Results on quantile estimates for the return

distribution of the S&P 500 index are also presented.

Keywords: Quantile; Value at Risk; Stochastic Volatility Model; Inte-

grated returns

1 Introduction

Representing the quantile of a portfolio’s return distribution, Value at Risk (VaR)

is a quantitative measure developed to deal with market risk that is, like credit

risk and liquidity risk, recognized as an important aspect of financial risk (Jo-

rion (2007)). Despite the criticism that VaR does not fall into the category of

coherent measures (Artzner et al. (1999)), VaR has been widely used by practi-

tioners in financial industries. This popularity is in part due to the fact that the
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methodology for the computation and statistical analysis of VaR are well estab-

lished. In the abundant literature on VaR, a frequently used assumption is that

the return sequence has a stationary distribution. Very few works have looked into

the non-stationary case. Perhaps this is because finding the time-varying quantile

of a non-stationary distribution does not appear to be a well-posed problem, at

least from the estimation point of view, when the source of non-stationarity is

not deterministic. The purpose of this article is to evaluate VaR under a typi-

cal circumstance of non-stationarity that the underlying distribution is based on

an integrated process with incremental returns belonging to a class of non-linear

models.

There are two concerns that motivate the present study. First, large institu-

tional investors such as insurance companies, pension funds, and sovereign funds

usually set a very long investment horizon for their portfolios, which could last for

several years depending on the nature of the funds. In order to assess the market

risk to which the portfolio’s positions are exposed, VaR is one of the popular mea-

sures that fund managers or financial advisors employ to quantify the risk. Since

the equity’s holding period is of long duration, it is appropriate to work on the

distribution derived from the portfolio’s integrated returns to evaluate the VaR.

Second, these long-term investors often need some financial vehicles to hedge the

risk incurred by the changes of currency rates or interest rates. The instruments

frequently used are either some OTC warrant-type contracts or publicly traded

equity options such as the LEAPS (Long-term Equity Anticipation Securities) is-

sued by CBOE (Chicago Board Options Exchange). The maturity of the latter

is from one to three years and that of the former could be even longer. Further-

more, because of the increasing demand for longer-term hedging tools for equities

by institutional investors after the global financial crisis in 2008, CBOE launched

in March 2012 the Super LEAPS option (an European-style option on S&P 500

index) with maturity of five years. For the seller of these contracts, one of the ma-

jor concerns is a large swing of the equity price away from the strike price (or the

spot price near at-the-money at the transaction time), which can be quantitatively

measured by the VaR of the equity’s integrated returns.

In view of the nonlinear nature of equity returns (Taylor (1986)), two popular

classes of stationary time series models have been proposed to describe the return
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dynamics: the ARCH (or GARCH) family (Engle (1982); Bollerslev (1986)) and

the stochastic volatility (SV) model (Taylor (1986)). Both are able to capture some

principal stylized facts exhibited by speculative equity returns such as volatility

clustering (Mandelbrot (1963)) and Taylor’s effect (Taylor (1986)). We focus on

the SV model to cover the popular regime-switching log-normal model (Hamilton

(1994); Hardy (2001); Hardy, Freeland, and Till (2006)).

To evaluate the quantiles of return distribution derived by using the whole

duration, the standard approach in the literature is to use the equity’s past returns

of some fixed frequency (daily or weekly for example) to identify the parametric

model, GARCH or SV, chosen in advance. Then use the model with estimated

parameters to simulate a large number of price paths with the given duration.

The collection of all the simulated prices in turn gives the empirical distribution

of the return and from which the quantile of interest is determined (Hardy (2001);

Hardy, Freeland, and Till (2006)). The main concern here is the lack of analytical

guidance to address the issue of inference.

To fill the gap, we employ a more direct approach that consists of two parts.

The first is to propose an estimate of the quantile for the underlying integrated

process. Second, we derive a closed-form formula for the quantile’s true value, and

show that the central limit theorem for the deviation between the estimate and

the true value holds. Before we formally present the results, it would be helpful

to explain our method heuristically. To simplify the issue, let {yt = atut, t =

1, . . . , T} be an observed sequence of independent returns with volatility changing

over time, where each yt is normally distributed with mean zero and non-random

variance a2
t > 0. Suppose σ2

T ≡ T−1
∑T

t=1 a
2
t converges to σ2

a > 0 as T tends

to infinity. We are concerned with the α-th VaR qα of the integrated returns

YT =
∑T

t=1 yt with horizon T , finding qα which satisfies α = P (YT < qα) or,

equivalently,

α = P
(
N(0, 1) < qα/(

√
TσT )

)
,

implying that

qα = Φ−1(α)
√
TσT ≈ Φ−1(α)

√
Tσa, (1)

where the approximation is justified by limT→∞ σ
2
T = σ2

a. Because limT→∞ T
−1
∑T

t y
2
t =

σ2
a with probability one, we can estimate qα by

q̂α = Φ−1(α)
√
T σ̂a (2)
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with σ̂2
a =

∑T
t y

2
t /T . Assuming further that

σ2
T = σ2

a + o(T−1/2) as T →∞, (3)

we have, by the Central Limit Theorem,

q̂α − qα = Φ−1(α)
√
T (σ̂a − σa)

d−→ N(0, c2), (4)

where c2 = a∗/(2σ2
a) with a∗ = limT→∞ T

−1
∑T

t=1 a
4
t . Thus, although the distribu-

tion of ST is non-stationary, its α-th quantile diverges with an explicit rate that

can be estimated. As a result, one can construct confidence intervals by using (4)

to infer the estimation error of (2).

Our technical task is then to extend the derivation of (1) and (4) to the SV

model where {at} is the exponential transformation of a stationary linear process

independent of {ut}. Results of the extension are stated in Theorems 1 and 2

of Section 2 where a multivariate version of the SV process is adopted to allow

modeling flexibility. In Section 3 we examine, through simulation, the finite sample

performance of the VaR estimate we propose, and demonstrate that our approach is

robust against non-normal {ut}, and is superior to the traditional simulation-based

method in terms of coverage ratios for confidence intervals. Section 4 presents

results on quantile estimates for the return distribution of the S&P 500 index.

Proofs of theorems are in the online supplementary document.

2 Multivariate Stochastic Volatility Model for

Equity Portfolios

We are concerned with the Value-at-Risk (VaR) of the integrated returns of a

portfolio consisting of m weighted component assets. The return model for the

assets is as follows. Let rt = (r1,t, ..., rm,t)
′ be the equity return vector at time t.

The multivariate SV (MSV) model is

rt = µ+ VtUt, (5)

where µ = (µ1, ..., µm)′ is the mean of rt, Vt = diag(v1,t, ..., vm,t), a diagonal ma-

trix, where vi,t = exp(Zi,t/2), i = 1, ...,m, Ut = (u1,t, ..., um,t)
′ is a sequence
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of shocks comprised of independent identically distributed (i.i.d.) random vec-

tors with mean 0 and a positive-definite covariance matrix ΣU = [σU,ij], and

Zt = (Z1,t, ..., Zm,t)
′ is an m-dimensional stationary short-memory process. Here,

{Zt} is an m-dimensional linear process

Zt = µz +
∞∑
s=0

Asηt−s, (6)

where µz = (µz,1, ..., µz,m), As = [A
(s)
ij ], ηt = (η1,t, ..., ηm,t)

′, {ηt} is a sequence

of i.i.d. random vectors with 0 mean, a positive-definite covariance matrix Ση =

[ση,ij], and is independent of {Ut}. Short-memory of {Zt} requires

∞∑
s=0

∣∣∣A(s)
ij

∣∣∣ <∞, for i = 1, ...,m, and j = 1, ...,m.

See Chapter 10 of Hamilton (1994) for further discussion. The MSV model we

adopt is similar to that of Harvey, Ruiz, and Shephard (1994) where {Zt} is a

vector autoregressive model of order 1 with a diagonal coefficient matrix, while in

our model, {Zt} is the more general linear process at (6). The model of Harvey

et al. (1994) is the first MSV model proposed in the literature. Since then, a wide

range of MSV models has been developed. See, for example, Asai, McAleer, and

Yu (2006) and Yu and Meyer (2006), and references therein.

For a given set of weights {wi : 1 ≤ i ≤ m} satisfying wi > 0 and
∑m

i=1wi = 1,

let r̃t be the return of the weighted portfolio,

r̃t =
m∑
i=1

wiri,t = µ̃+
m∑
i=1

wivi,tui,t, (7)

with mean µ̃ =
∑m

i=1wiµi and variance σ2 = E(r̃t − µ̃)2. We first establish a

central limit theorem for µ̂T = T−1
∑T

t=1 r̃t and σ̂2
T = T−1

∑T
t=1(r̃t − µ̂T )2 derived

from the return sequence {r̃t : t = 1, . . . , T} following the SV model defined in (5),

(6), and (7).

Theorem 1 Assume that the portfolio returns {r̃t} follow the SV model specified

at (7) such that, for each i, Ev4
1,1 < ∞ and {ui,t} is a sequence of i.i.d. mean-

zero-unit-variance random variables independent of {Vt}. Then as T →∞

√
T (µ̂T − µ̃)

d−→ N(0, σ2) (8)
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√
T
(
σ̂2
T − σ2

) d−→ N
(
0, g2

)
. (9)

If {ηt} ∼ N(0,Ση), then

g2 =
m∑

i,j,k,l=1

wiwjwkwl (σU,ikσU,jl + σU,ilσU,jk) e
J ′
4µz(i,j,k,l)+ 1

2
J ′
4ΣZ(i,j,k,l)J4

+
m∑

i,j,k,l=1

wiwjwkwle
J ′
4µz(i,j,k,l)+ 1

2
J ′
2{ΣZ(i,j)+ΣZ(k,l)}J2σU,ijσU,kl

(
eσZ,ik+σZ,il+σZ,jk+σZ,jl − 1

)
×

{
1 +

2

eσZ,ik+σZ,il+σZ,jk+σZ,jl − 1

∞∑
u=1

(
eJ

′
2{ΣZ,{(i,j),(k,l)}(−u)}J2 − 1

)}
, (10)

where J2 = (1, 1)′, J4 = (1, 1, 1, 1)′, µz(i, j, k, l) = (µz,i, µz,j, µz,k, µz,l)
′,

ΣZ(i, j) =

 σZ,ii σZ,ij

σZ,ji σZ,jj

 ,

ΣZ(i, j, k, l) =


σZ,ii σZ,ij σZ,ik σZ,il

σZ,ji σZ,jj σZ,jk σZ,jl

σZ,ki σZ,kj σZ,kk σZ,kl

σZ,li σZ,lj σZ,lk σZ,ll

 ,

ΣZ = [σZ,ij] = E [(Zt − µz)(Zt − µz)′] ,

ΣZ(r) = [σZ,ij(r)] = E [(Zt − µz)(Zt−r − µz)′] ,

and

ΣZ,{(i,j),(k,l)}(−u) =

 σZ,ik(−u) σZ,il(−u)

σZ,jk(−u) σZ,jl(−u)

 .

Let {St, t = 0, 1, . . . , T} be the price process formed by the portfolio returns

{r̃t}, ln(ST/S0) =
∑T

t=1 r̃t. Denote by Qα(T ) the α-th quantile of ST and set

AT = (ln(Qα(T )/S0)− T µ̃)/
√
T . Thus,

α = P

(∑T
t=1 r̃t − T µ̃√

Tσ
<
AT
σ

)
, (11)

with σ2 = E(r̃t − µ̃)2. For (11) to hold, one needs the distribution of r̃t to be

continuous. This follows from the normality assumtion of Ut imposed later in

Theorem 2. From the central limit theorem established in (8), we have AT/σ ≈
Φ−1(α), which suggests an estimate for Qα(T ),

Q̂α(T ) = S0 exp
{

Φ−1(α)
√
T σ̂T + Tµ∗

}
, (12)
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where σ̂T = (T−1
∑T

t=1(r̃t − µ∗)2)1/2 with µ∗ = µ̃ if µ̃ is known or µ∗ = µ̂T =

T−1
∑T

t=1 r̃t otherwise.

The next result gives the asymptotical normality of the sequence of estimation

errors ln(Q̂α(T )/Qα(T )).

Theorem 2 Under the assumptions of Theorem 1 and the normality of Ut, if µ̃

is known,

ln
(
Q̂α(T )/Qα(T )

)
d−→ N(0, (gΦ−1(α)/(2σ))2) (13)

with same g2 in (10); if µ̃ is unknown,

T−1/2 ln
(
Q̂α(T )/Qα(T )

)
d−→ N(0, σ2). (14)

Theorems 1 and 2 still hold if the weights {ωi} are allowed to be negative,

mainly because the central limit theorem developed in Theorem 1 is not affected

by this. Theorem 2 has the implication that, although the quantile Qα(T ) diverges

as T → ∞, one can still assess its asymptotical location by using the confidence

intervals derived from (13) or (14). In contrast to the usual cases, the width of

confidence interval formed by (13) or (14) does not shrink as T → ∞. This is

expected since the parameter (quantile or VaR) of interest belongs to the distri-

bution of a sum of stationary variables instead of the common distribution of the

variables themselves.

3 Simulation Studies

3.1 Empirical Coverage Probabilities of the Confidence In-

tervals

From Section 2, for µ̃ known, the 100(1− β) % confidence interval for Qα(T ) or

the 100α% quantile of liability distribution is

Q̂α(T ) exp (−hU) ≤ Qα(T ) ≤ Q̂α(T ) exp (−hL) , (15)

where L and U are the 100 (β/2) % and the 100 (1− β/2) % standard normal quan-

tiles, respectively, and h =
{

(gΦ−1(α)/(2σ))
2
}1/2

, where g2 is at (10), and Φ−1(·)
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is the inverse distribution function of the standard normal. For µ̃ unknown, the

100(1− β) % confidence interval for Vα(T ) is

Q̂α(T ) exp
(
−
√
T σ̂TU

)
≤ Qα(T ) ≤ Q̂α(T ) exp

(
−
√
T σ̂TL

)
. (16)

Here (12), (15), and (16) give illustrations of how Theorems 1 and 2 are used to

obtain point and interval estimators for Qα(T ) when the objective function is a

monotone function of ST . The results are not applicable if the objective function is

not a monotone (or piecewise monotone) function of ST . For more general payoff

functions, it is a challenging problem if the function form is unknown. In the

context of regression estimation, Park and Phillips (1999, 2001) are among the few

works published on nonlinear transformations of integrated returns.

To form the confidence interval specified in (15), one needs a good estimate

for g2. Following (10) to directly estimate g2 may not be feasible, since the

autocorrelation functions of Vt and Ut, are difficult to separate in the multivariate

case. Instead, we employ a resampling scheme, the sampling window method, that

has been established for dependent data; see Politis, Romano, and Wolf (1999)

for a comprehensive survey on the topic and references therein. Because g2 is the

long-run variance of
√
T (σ̂2

T −σ2), it suffices to focus on the variance derived from

subsamples. Specifically, let Bi =
(
ri, ..., ri+b−1

)
denote the i-th subsample of block

size b, 1 ≤ i ≤ T − b+ 1, and µ̂i = b−1
∑i+b−1

t=i rt. By using the sample variance of

Bi, σ̂
2
T,b,i =

i+b−1∑
t=i

(rt − µ̂i)2 /(b− 1), we consider as an estimator for g2,

1

T − b+ 1

T−b+1∑
i=1

{√
b(σ̂2

T,b,i − σ̂2
T )
}2

, (17)

where b = cT 1/3 for some c ≥ 1.

We conducted numerical studies to investigate the empirical coverage rates of

the confidence intervals (15) and (16). We considered m = 1, m = 2 and m = 10.

For m = 1, we simulated {rt = r1,t}t=1,...,T from

rt = µ+ VtUt, Vt = σ̄ exp(Zt/2), (18)

where {Zt = Z1,t} is the Gaussian AR(1) process determined by Zt = φZt−1 + εt,

and εt
i.i.d.∼ N

(
0, β̄2 (1− φ2)

)
. We took S0 = 1, µ = 0.0003, σ̄ = 0.0099, β̄ = 0.4,

α = 0.95 and 0.99, φ = 0.1, 0.3, 0.5, 0.7, and 0.9, and T = 2,500 and 5,000.
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For {Ut = u1,t}, we took the distributions for Ut as standard normal; generalized

error distribution (GED) with mean=0, sd=1, ν = 1, 1.5, and 2 (for ν = 2, it

is just standard normal); skew-normal (SN) with (ξ, ω, α, τ) = (1.22, 1.58,−4, 0),

(0.68, 1.21,−1, 0), (0, 1, 0, 0), (−0.68, 1.21, 1, 0), and (−1.22, 1.58, 4, 0). (The values

of ξ and ω ensure that the mean and variance of Ut are 0 and 1, respectively). The

purpose of considering non-normal distributions is to highlight the robustness of

our approach against departures from normality.

For m = 2 and m = 10, we considered rt = µ+ σ̄VtUt, Zt = ΦZt−1 + εt, and Ut

εt

 i.i.d.∼ MVNm

 0m

0m

 ,

 ΣU 0m,m

0m,m Σε

 ,

whereMVNm stands form-dimensional multivariate normal, µ = (0.0003, ..., 0.0003),

Φ = φIm, Im is them×m identity matrix, Vt = diag(v1,t, ..., vm,t), vi,t = exp(Zi,t/2),

i = 1, ...,m, 0m is the m× 1 zero vector, and 0m,m is the m×m zero matrix. We

took wi = 1/m, for all i, and the values of σ̄, φ, α, and T to be the same as those

of the univariate case.

For m = 2,

ΣU =

 1 ρu

ρu 1

 , Σε = c̄

 1 ρε

ρε 1

 ,
where c̄ = β̄2(1 − φ2), and again β̄ = 0.4. For (ρu, ρε), we considered (ρu, ρε) =

(0, 0), (ρu, ρε) = (−0.5, 0.5), (ρu, ρε) = (0.5, 0.5), and (ρu, ρε) = (−0.5,−0.5).

For m = 10, ΣU = [ΣU(i, j)], where

ΣU(i, j) =



1 if i = j,

ρU,1 if i 6= j, i ∧ j = 1, (i− j) is odd,

ρU,2 if i 6= j, i ∧ j = 1, (i− j) is even,

ρU,3 if i 6= j, i ∧ j ≥ 2, (i− j) is odd,

ρU,4 if i 6= j, i ∧ j ≥ 2, (i− j) is even,

i ∧ j = min(i, j), and Σε is defined similarly. For ρU = (ρU,1, ..., ρU,4) and ρε =

(ρε,1, ..., ρε,4), we considered (ρU , ρε) = (ã, ã), (ρU , ρε) = (b̃, b̃), (ρU , ρε) = (c̃, c̃),

(ρU , ρε) = (c̃, b̃), and (ρU , ρε) = (b̃, c̃), where ã = (0, ..., 0), b̃ = (0.5, 0.5, 0.25, 0.25),

and c̃ = (−0.5, 0.5,−0.25, 0.25).

The coverage probabilities of 95% confidence intervals for Qα(T ) based on

stochastic volatility sequences for (T, α) = (2,500, 0.95), (5,000, 0.95), (2,500, 0.99),
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and (5,000, 0.99) are summarized in Tables 1, 2, 3, and 4, respectively. The true

Qα(T ) for each of the cases was computed based on 106 price paths with the

given (T, α), modeling distribution and parameters, 10,000 replicates were used

to calculate the probabilities. For the case of known mean, c was set to be 3 for

the block size when the sampling window method was applied to estimate g2. In

Tables 1, 2, 3, and 4, the smallest and largest coverage probabilities are 0.9053,

and 0.9587, respectively. The results in the tables show that the empirical coverage

probabilities are all close to their nominal counterparts. In general, the empirical

coverage probabilities when µ unknown are closer to the nominal counterparts than

those when µ is known.

3.2 Comparison with the simulation-based Method

We conducted numerical experiments to compare the empirical coverage probabil-

ities of our non-parametric method with the traditional simulation-based method.

For the ease of simulation, we focused on the univariate case. For the traditional

simulation-based method, we used the following steps to get the coverage proba-

bilities of 95% confidence intervals for Qα(T ).

Step 1. Simulate {rt = r1,t}t=1,...,T from the true data generating process.

Step 2. Estimate the parameters. In estimating the SV models, three methods

are available: the method of moment, the quasi-maximum likelihood (QML)

approach of Harvey, Ruiz, and Shephard (1994) and the Bayesian approach of

Jacquier, Polson, and Rossi (1994). As documented in Table 4 of Jacquier,

Polson, and Rossi (1994), the Bayesian approach is superior to the other

two methods in terms of bias and standard error, we adopt the Bayesian ap-

proach. (The Bayesian approach is implemented by the R package ‘stochvol’,

available at http://cran.r-project.org/web/packages/stochvol/index.html.)

Step 3. Simulate {rt} from the data generating process with the parameter values

estimated from Step 2.

Step 4. Compute H = S0 exp(
∑T

t=1 rt) based on the {rt} generated from Step 3.

Step 5. Repeate Steps 3 - 4 1,000 times to get H1, ..., H1,000.

10



T
ab

le
1:

C
ov

er
ag

e
p
ro

b
ab

il
it

ie
s

of
95

%
co

n
fi
d
en

ce
in

te
rv

al
fo

r
Q
α
(T

)
b
as

ed
on

st
o
ch

as
ti

c
vo

la
ti

l-

it
y

se
q
u
en

ce
s.

T
h
e

re
su

lt
s

ar
e

b
as

ed
on

10
,0

00
re

p
li
ca

te
s,

an
d

th
e

tr
u
e
Q
α
(T

)
co

m
p
u
te

d
b
y

si
m

u
la

ti
n
g

10
6

p
ri

ce
p
at

h
s

fr
om

th
e

tr
u
e

m
o
d
el

,
T

=
2,

50
0,

an
d
α

=
0.

95
.

µ
k
n
ow

n
u
n
k
n
ow

n

U
t
\
φ

0.
1

0.
3

0.
5

0.
7

0.
9

0.
1

0.
3

0.
5

0.
7

0.
9

(1
)

0.
94

99
0.

94
45

0.
94

45
0.

94
49

0.
92

53
0.

95
06

0.
94

79
0.

95
03

0.
94

98
0.

94
93

(2
)

0.
94

64
0.

94
21

0.
93

85
0.

94
16

0.
93

40
0.

94
71

0.
95

01
0.

95
06

0.
95

30
0.

94
92

(3
)

0.
94

95
0.

94
61

0.
94

06
0.

94
56

0.
92

72
0.

95
13

0.
95

14
0.

94
89

0.
94

65
0.

95
35

(4
)

0.
94

63
0.

94
99

0.
94

79
0.

94
32

0.
92

75
0.

95
01

0.
95

51
0.

94
41

0.
94

73
0.

94
84

(5
)

0.
94

68
0.

94
41

0.
94

80
0.

94
45

0.
92

57
0.

94
78

0.
94

84
0.

95
09

0.
94

93
0.

94
72

(6
)

0.
93

86
0.

94
12

0.
94

15
0.

93
40

0.
92

33
0.

94
80

0.
94

46
0.

94
61

0.
94

75
0.

94
56

(7
)

0.
94

67
0.

94
49

0.
94

50
0.

94
59

0.
92

98
0.

95
36

0.
95

22
0.

95
73

0.
95

68
0.

95
41

(8
)

0.
94

51
0.

94
37

0.
94

38
0.

93
90

0.
92

71
0.

94
93

0.
94

84
0.

94
82

0.
95

06
0.

94
70

(9
)

0.
94

22
0.

94
49

0.
94

81
0.

94
24

0.
92

47
0.

95
20

0.
94

99
0.

95
15

0.
94

98
0.

94
75

(1
0)

0.
94

78
0.

94
57

0.
94

62
0.

94
19

0.
93

81
0.

94
92

0.
94

97
0.

94
75

0.
95

04
0.

94
82

(1
1)

0.
94

61
0.

93
91

0.
94

44
0.

94
04

0.
92

41
0.

94
59

0.
94

83
0.

95
35

0.
94

89
0.

94
96

(1
2)

0.
94

51
0.

94
50

0.
94

26
0.

93
98

0.
92

71
0.

95
14

0.
95

07
0.

94
95

0.
95

11
0.

94
78

(1
3)

0.
94

90
0.

94
62

0.
94

67
0.

94
36

0.
94

08
0.

95
08

0.
94

99
0.

94
64

0.
94

95
0.

95
16

(1
4)

0.
94

70
0.

94
66

0.
94

78
0.

94
69

0.
94

32
0.

95
11

0.
95

13
0.

95
18

0.
95

14
0.

94
88

(1
5)

0.
94

76
0.

94
87

0.
94

77
0.

94
73

0.
93

91
0.

95
10

0.
95

27
0.

95
19

0.
95

29
0.

95
14

(1
6)

0.
95

01
0.

95
22

0.
95

01
0.

95
03

0.
94

39
0.

94
77

0.
94

94
0.

94
92

0.
95

06
0.

95
06

(1
7)

0.
94

81
0.

94
70

0.
94

95
0.

95
19

0.
94

32
0.

95
33

0.
95

30
0.

95
18

0.
95

31
0.

95
27

(1
8)

0.
94

79
0.

94
71

0.
94

92
0.

94
80

0.
93

22
0.

95
26

0.
95

18
0.

95
18

0.
95

14
0.

94
90

(1
)

st
an

d
ar

d
n

or
m

al
;

(2
)

G
E

D
(0

,1
,1

);
(3

)
G

E
D

(0
,1

,1
.5

);
(4

)
G

E
D

(0
,1

,2
);

(5
)

S
N

(-
0
.6

8
,1

.2
1
,1

);
(6

)
S

N
(-

1.
22

,1
.5

8,
4)

;
(7

)
S

N
(1

.2
2,

1.
58

,-
4)

;
(8

)
S

N
(0

.6
8
,1

.2
1
,-

1
);

(9
)

S
N

(0
,1

,0
,0

);
(1

0
)

M
V

N
2
(0

,0
);

(1
1
)

M
V

N
2
(-

0
.5

,0
.5

);

(1
2)

M
V

N
2
(0

.5
,0

.5
);

(1
3)

M
V

N
2
(-

0
.5

,-
0
.5

);
(1

4
)

M
V

N
1
0
(ã
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Step 6. Compute Q̂α(T ) based on H1, ..., H1,000 from Step 5.

Step 7. Repeat Steps 3 - 6 500 times to get Q̂α(T )1, ..., Q̂α(T )500.

Step 8. We compute the 95% confidence interval of Qα(T ) based on Q̂α(T )1, ...,

Q̂α(T )500 from Step 7.

Step 9. Check if the confidence interval computed from Step 8 covers the true

Qα(T ).

Step 10. Repeat Steps 1 - 9 500 times to get 500 confidence intervals, and see

how many confidence intervals cover the true Qα(T ).

For the true data generating processes, we considered the univariate case with Ut

being standard normal, GED(0,1,1), and SN(-0.68,1.21,1,0), T = 500, 1,000, 1,500,

2,000, 2,500, and 5,000, µ is known and µ is unknown, φ = 0.5 and 0.9. Again,

α = 0.95 and 0.99. The other settings are those of Subsection 3.1. The results are

summarized in Table 5. In general, the empirical coverage probabilities using (15)

and (16) are closer to the nominal coverage probabilities than their simulation-

based counterparts. The superiority of using (15) and (16) is pronounced when

µ is unknown. Indeed, for the case that µ is unknown, all the empirical cover-

age probabilities of the simulation-based method are lower than 25%. For the

case of unknown mean, we attribute the poor performance of the simulation-based

method as follows. A close look at the proof of Theorem 2 reveals that the es-

timation error of µ̂T − µ̃ dominates the limit of T−1/2 ln(Q̂α(T )/Qα(T )). This

error was accumulated to exp{T (µ̂T − µ̃)} in simulating the integrated returns

H = S0 exp{T (µ̂T − µ̃)} exp{
∑T

t=1(r′t + µ)} performed in Step 4, where the r′t are

generated by the zero-mean SV model with parameters obtained in Step 2. Accord-

ing to the law of the iterated logarithm, the term exp{T (µ̂T−µ̃)} = exp{
∑T

t=1 vtut}
fluctuates with probability one between (log T )−c

√
T and (log T )c

√
T for some pos-

itive c. Large biases are therefore created in Step 8 by the multiplicative factor

exp{T (µ̂T − µ̃)} when computing the lower and upper limits of the confidence

interval, and consequently result in low coverage rates of the true quantile.
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Table 5: Comparison of the coverage probabilities of 95% confidence intervals for Qα(T ) based

on equations (15) and (16) and the traditional sampling-based method, with the parameters

estimated by the Bayesian appraoch of Jacquier, Polson and Rossi (1994). The results are

based on 500 replicates, and the true Qα(T ) computed by simulating 106 price paths from the

true model, T = 500, 1,000, 1,500, 2,000, 2,500, and 5,000, and α = 0.95 and 0.99.
µ known unknown

α 0.95 0.99 0.95 0.99

T φ Ut Eqn. (15) MCMC Eqn. (15) MCMC Eqn. (16) MCMC Eqn. (16) MCMC

500 0.5 (1) 0.935 0.940 0.935 0.988 0.946 0.094 0.946 0.180

(2) 0.916 0.842 0.916 0.902 0.946 0.098 0.944 0.174

(3) 0.935 0.958 0.933 0.974 0.945 0.116 0.944 0.172

0.9 (1) 0.891 0.880 0.889 0.940 0.946 0.108 0.945 0.190

(2) 0.901 0.734 0.896 0.838 0.949 0.092 0.949 0.170

(3) 0.896 0.858 0.892 0.924 0.949 0.110 0.947 0.186

1000 0.5 (1) 0.939 0.996 0.939 0.998 0.950 0.110 0.950 0.198

(2) 0.936 0.952 0.937 0.980 0.949 0.086 0.949 0.164

(3) 0.940 0.992 0.940 0.996 0.948 0.102 0.947 0.154

0.9 (1) 0.908 0.960 0.907 0.986 0.949 0.116 0.948 0.200

(2) 0.912 0.898 0.905 0.942 0.947 0.108 0.947 0.192

(3) 0.913 0.962 0.912 0.994 0.948 0.094 0.948 0.182

1500 0.5 (1) 0.942 0.998 0.941 1.000 0.952 0.094 0.951 0.190

(2) 0.937 0.962 0.937 0.994 0.949 0.106 0.950 0.152

(3) 0.945 1.000 0.943 1.000 0.950 0.092 0.950 0.158

0.9 (1) 0.913 0.990 0.912 0.998 0.951 0.098 0.950 0.170

(2) 0.917 0.942 0.918 0.984 0.951 0.112 0.950 0.182

(3) 0.917 0.992 0.916 0.998 0.946 0.128 0.946 0.198

2000 0.5 (1) 0.946 1.000 0.946 1.000 0.948 0.100 0.948 0.186

(2) 0.939 0.976 0.935 0.996 0.950 0.134 0.950 0.212

(3) 0.943 1.000 0.942 1.000 0.948 0.100 0.948 0.162

0.9 (1) 0.927 0.994 0.926 1.000 0.949 0.122 0.948 0.202

(2) 0.921 0.960 0.921 0.986 0.952 0.102 0.953 0.178

(3) 0.921 0.998 0.919 1.000 0.948 0.126 0.948 0.176

2500 0.5 (1) 0.945 1.000 0.945 1.000 0.950 0.094 0.950 0.168

(2) 0.939 0.988 0.939 0.998 0.951 0.118 0.951 0.192

(3) 0.948 1.000 0.944 1.000 0.951 0.098 0.950 0.174

0.9 (1) 0.925 1.000 0.923 1.000 0.949 0.104 0.949 0.168

(2) 0.934 0.966 0.934 0.992 0.949 0.088 0.949 0.134

(3) 0.926 1.000 0.927 1.000 0.947 0.122 0.947 0.194

5000 0.5 (1) 0.951 1.000 0.950 1.000 0.948 0.082 0.948 0.146

(2) 0.946 0.998 0.946 1.000 0.950 0.078 0.950 0.162

(3) 0.944 1.000 0.946 1.000 0.950 0.096 0.950 0.186

0.9 (1) 0.932 1.000 0.929 1.000 0.950 0.086 0.950 0.176

(2) 0.938 1.000 0.932 1.000 0.952 0.106 0.952 0.178

(3) 0.933 1.000 0.933 1.000 0.948 0.098 0.948 0.168

(1) standard normal; (2) GED(0,1,1); (3) SN(-0.68,1.2,1,0).
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4 Application

We applied our proposed method to estimate the integrated return of S&P 500

index and S&P 500 portfolio from CRSP(Center for Research in Security Prices)

(available at http://wrds-web.wharton.upenn.edu/wrds/). The data period is from

the year of 1963 to the year of 2013, so that we have 12,838 daily data. With the

returns {rt}t=1,...,12,838, we used the following steps to get the coverage probabilities

of 95% confidence intervals for Qα(T ).

Step 1. From r1, r2, ..., r1,260, we get the first ST .

Step 2. From r21, r22, ..., r1,280, we get the second ST .

Step 3. And so on ...

Step 4. Finally, from r11,561, r11,562, ..., r12,820, we get the final ST .

Step 5. From Steps 1 to 4, there are 579 ST ’s in total.

Step 6. We rank 579 ST ’s to get the α-th quantile, and treat this quantile com-

puted as the true Qα(T ).

We thus divided the sample into 579 overlapping subsamples with each sub-

sample consisting of 1,260 observations, and every two consecutive subsamples

being 20 trading days apart. The 1,260 returns for each subsample is chosen to

match the 5-year maturity of the Super LEAPS S&P 500 index option contract

mentioned in Section 1. The distance of 20 trading days, about one trading month,

that separates neighboring subsamples is only a rough choice intended to strike a

balance between generating sufficiently many subsamples and keeping them from

too hevily overlapping with each other.

We also used these data to compute the confidence intervals by (16) to see

if the confidence intervals cover the true value obtained in Step 8. Finally, we

computed the empirical coverage rates. The results are summarized in Table 6.

From the table, the empirical coverage rates of the 95% confidence intervals of

Qα(T ) are close to the nominal rates. Those for the equal-weighted returns are

closer to the nominal rates than those for the value-weighted returns.
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Table 6: The true values of Qα(T ) and the empiri-

cal coverage rates of the 95% confidence intervals of

Qα(T ) for the equal-weighted returns (excluding divi-

dends) and the value-weighted returns (excluding div-

idends) of the S&P 500 index.
EWR VWR

α 0.95 0.99 0.95 0.99

true values of Qα(T ) 2.5036 3.1579 2.6936 3.1828

empirical coverage rates 0.9551 0.9413 0.9119 0.9033

EWR (equal-weighted returns); VWR (value-weighted returns).

5 Discussion

Two issues are worthy of further investigation. First, since VaR is not coherent,

it would be interesting from both the theoretical and practical view points to see

whether asymptotic properties similar to Theorem 2 can be established for a co-

herent risk measure such as the conditional tail expectation E (ST | ST > Qα(T )).

Second, it is a challenging problem to extend the duration time T from determin-

istic to random. The extension is motivated by the practice in fund management

where fund managers are forced to close parts or all of a fund’s positions due to

a massive redemption by clients. Since the time at which the redemption occurs

is random, the quantile that needs to be evaluated is based on the price process

indexed by a random time. The methods developed here may form a good basis

to further address the two issues.
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