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Abstract

This paper studies the impact of permanent volatility shifts in the innovation process on

the performance of the test for explosive financial bubbles based on recursive right-tailed

Dickey-Fuller-type unit root tests proposed by Phillips et al. (2011). We show that, in this

situation, their supremum-based test has a non-pivotal limit distribution under the unit

root null, and can be quite severely over-sized, thereby giving rise to spurious indications

of explosive behaviour. We investigate the performance of a wild bootstrap implementation

of their test procedure for this problem, and show it is effective in controlling size, both

asymptotically and in finite samples, yet does not sacrifice power relative to an (infeasible)

size-adjusted version of their test, even when the shocks are homoskedastic. We also discuss

an empirical application involving commodity price time series and find considerably less

emphatic evidence for the presence of speculative bubbles in these data when using our

proposed wild bootstrap implementation of the Phillips et al. (2011) test.

Keywords: Rational bubble; Explosive autoregression; Non-stationary volatility; Right-

tailed unit root testing.

JEL Classification: C22; C12; G14.

1 Introduction

In seminal research on the presence of explosive rational asset price bubbles in stock prices,

Diba and Grossman (1988) highlight the usefulness of unit root tests for detecting such bubbles.

They note that if the bubble component of the stock price evolves as an explosive autoregressive
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process then, since an explosive autoregressive process cannot be differenced to stationarity,

a finding of non-stationarity for the price and dividend series when the series are in levels

but stationarity when the series are in first differences is indicative that an explosive rational

bubble does not exist. Consequently, Diba and Grossman (1988) proposed testing the no bubble

hypothesis by applying orthodox left-tailed unit root tests to the price and dividend series in

levels and first-differenced forms. More recently, researchers in this area have focused on testing

for explosive autoregressive behaviour directly via the application of right-tailed Dickey-Fuller

[DF] tests. Phillips et al. (2011) [PWY] were the first to employ this approach. They suggest a

test procedure for detecting explosive rational bubbles in stock prices based on the supremum

of a set of forward recursive right-tailed DF test statistics applied to the price and dividend

series in levels only. If the test finds explosive autoregressive behaviour for the prices (but not

for the dividends), this indicates the presence of an explosive rational bubble.

The PWY test is simple to apply and Monte Carlo simulations reported in PWY show that it

has very good finite sample power to detect an explosive asset price bubble. PWY apply their

proposed testing procedure to the Nasdaq Composite stock price index and dividend index

between February 1973 and June 2005. Their results indicate the presence of an explosive

rational bubble beginning in mid-1995. The PWY test and related tests have become popular

with applied researchers investigating the presence or otherwise of speculative bubbles in various

different financial price series data. Gilbert (2010) employs the PWY test to investigate for the

presence of speculative bubbles in commodities futures prices over 2000-2009, finding evidence

of bubbles in the copper, nickel and crude oil markets. Homm and Breitung (2012) apply the

PWY test and a related Chow-type test to stock price, commodity price and house price data,

finding evidence of bubbles in many of the series examined. Bettendorf and Chen (2013) use

the PWY test to look for explosive bubbles in the sterling-US dollar nominal exchange rate.

They find statistically significant evidence of explosive behaviour in the nominal exchange rate

and this appears to be driven by explosive behaviour in the relevant price index ratio for traded

goods.

Our focus in this paper is on the performance of the PWY test in cases where the volatility

of the innovation process is subject to non-stationarity, a leading example of which is where

structural breaks occur in the unconditional variance of the innovation process. A growing

number of applied studies have found strong evidence of structural breaks in the unconditional

variance of asset returns, often with the breaks linked to major financial and macroeconomic

crises such as the 1970s oil price shocks, the East Asian currency crisis in the late-1990s, the

dot-com crash in 2001 and the recent global financial crisis in 2007-2009. Indeed in a number of

these studies very large structural breaks have been detected; for example, Rapach et al. (2008)

and McMillan and Wohar (2011) detect breaks in the unconditional variance of the returns of

some major stock market indices and sectoral stock price indices, finding that the unconditional

variance in some sub-samples can be larger than that in other sub-samples by a factor of about

ten. For commodity returns, both Calvo-Gonzalez et al. (2010) and Vivian and Wohar (2012)
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find statistically significant evidence of structural breaks in unconditional volatility. Needless to

say, volatility changes in innovations to price series processes could be induced by the presence

of a speculative bubble, but equally it could be the case that changes in volatility occur without

an explosive bubble period occurring. It is therefore critically important to have available a

reliable method for detecting an explosive period in a series that is robust to the potential

presence of non-stationary volatility. This is particularly important if the evidence is intended

to inform future monetary policy.

A key feature of the PWY test is that, as with the orthodox DF test, it assumes that

the unconditional variance of the innovation process is stationary under both the unit root

null hypothesis and the explosive alternative hypothesis. If the PWY test is applied to prices,

this assumption implies that when a bubble does not exist, the unconditional variance of the

innovations does not undergo permanent shifts of any form. Thus, if there was, say, a major

financial/macroeconomic crisis that increased unconditional volatility, then so the PWY test

applied to the price series would be inherently misspecified. If such a crisis was not preceded by

an asset price bubble, then market effi ciency arguments would suggest that the price series will

follow a unit root process; that is, the null hypothesis associated with the PWY test is true,

but the volatility break could have an impact on the size properties of the PWY test. The most

serious consequence of this would be spurious rejections of the no bubble hypothesis, indicating

the presence of a bubble when one does not actually exist.

We first analyse the asymptotic properties of the PWY test statistic when non-stationary

volatility is allowed for in the innovations. We show that the limiting distribution of the PWY

statistic depends on nuisance parameters derived from the pattern of heteroskedasticity present

in the innovations, and that this holds under both the null and local alternatives. We quantify

these effects for a variety of non-stationary volatility processes including single and double

breaks in volatility and trending volatility. These results show that the PWY test can be badly

over-sized for plausible models of non-stationary volatility and, as a result, spuriously reject

the unit root null hypothesis in favour of explosive behaviour.

In response to the inference problem we identify with the standard PWY test, we propose

a simple solution that restores correct asymptotic size. In particular, we propose applying the

wild bootstrap re-sampling scheme to the first differences of the data, in order to replicate

in the re-sampled data the pattern of non-stationary volatility present in the original innova-

tions. We show that the wild bootstrap analogues of the PWY statistic share the same (first

order) limiting null distribution as the original statistics within a broad class of non-stationary

volatility processes. Hence, asymptotic inference is rendered robust to the potential presence

of non-stationary volatility in the innovations without requiring the practitioner to specify a

parametric model for the volatility process. Importantly, we also demonstrate that our pro-

posed bootstrap PWY test achieves the asymptotic local power function of an (infeasibly)

size-corrected implementation of the original PWY statistic, under locally explosive alterna-

tives. Under fixed magnitude explosive alternatives our bootstrap PWY test is shown to be
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consistent, although its finite sample power may no longer match that of a size-corrected origi-

nal PWY statistic. To this end, we also consider a second bootstrap PWY test procedure that

achieves the power of the size-corrected original PWY statistic under both locally and fixed

explosive alternatives. This is based on fitting a model of the explosive regime to the data

using the Bayesian information criterion [BIC] based model selection procedure of Harvey et

al. (2014). We find there is rather little to choose between the powers (and sizes) of the simple

first differences and model-based bootstrap procedures, which we take as supporting evidence

that the simpler procedure is more than adequate for practical implementation.

The paper is organised along the following lines. In section 2 we introduce our reference

data generation process (DGP), which categorises the type of explosive behaviour we consider,

and details the class of non-stationary volatility within which we work. Section 3 outlines the

standard PWY test. In section 4 we establish the large sample behaviour of the PWY statistic

under both the unit root null and locally explosive alternatives when non-stationary volatility

is present. Here we quantify the impact on the asymptotic size of the PWY test of a number of

empirically relevant models of non-stationary volatility. Our simple wild bootstrap procedure is

proposed in section 5 and its asymptotic properties are established under both the null and local

alternatives. The behaviour of our proposed wild bootstrap procedure under a fixed magnitude

explosive alternative is also examined, and the model-based alternate procedure is introduced.

In section 6 we examine the finite sample size and power of the standard PWY test and both

bootstrap variants under non-stationary volatility. Section 7 discusses an empirical application

involving several commodity price time series. Section 8 concludes.

In the following: 1(.) denotes the indicator function; b·c denotes the integer part; x := y

(x =: y) indicates that x is defined by y (y is defined by x); w→ denotes weak convergence,
p→

convergence in probability, and w→p weak convergence in probability (see, for example, Giné

and Zinn, 1990), in each case as the sample size diverges; finally, C = C[0, 1] denotes the space

of continuous processes on [0, 1], and D = D[0, 1] the space of right continuous with left limit

(càdlàg) processes on [0, 1].

2 The Heteroskedastic Stochastic Bubble Model

We will consider the time series process {yt} generated according to the following DGP,

yt = µ+ ut (1)

ut =


ut−1 + εt, t = 2, ..., bτ1,0T c,
(1 + δ1,T )ut−1 + εt, t = bτ1,0T c+ 1, ..., bτ2,0T c,
(1− δ2,T )ut−1 + εt, t = bτ2,0T c+ 1, ..., bτ3,0T c,
ut−1 + εt, t = bτ3,0T c+ 1, ..., T

(2)

where δ1,T ≥ 0 and δ2,T ≥ 0. We assume that the initial condition u1 is such that u1 = op(T
1/2),

while the innovation process {εt} satisfies the following assumption:
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Assumption 1 Let εt = σtzt where zt ∼ IID(0, 1) with E|zt|r < K <∞ for some r ≥ 4. The

volatility term σt satisfies σt = ω (t/T ), where ω (·) ∈ D is non-stochastic and strictly positive.
For t ≤ 0, σt ≤ σ̆ <∞.

When δ1,T > 0, yt follows a unit root process up to time bτ1,0T c, after which point it displays
explosive autoregressive behaviour over the period t = bτ1,0T c + 1, ..., bτ2,0T c. When applied
to finanical price series, and assuming unit root behaviour in the corresponding dividend series,

this explosive period can be interpreted as a bubble regime. At the termination of the bubble

period, the DGP in (1)-(2) admits two possibilities: if δ2,T = 0, yt reverts to unit root dynamics

directly, while if δ2,T > 0, the unit root dynamics resume after an interim stationary regime

over the time period t = bτ2,0T c+ 1, ..., bτ3,0T c. This specification follows Harvey et al. (2014)
and provides a model of a crash regime, where the mean-reverting stationary behaviour in this

regime acts to “offset” the explosive period to some extent. The magnitude of δ2,T and the

duration of the collapse regime (bτ3,0T c − bτ2,0T c) control the rapidity and extent to which
a collapse occurs. This approach offers a flexible way of modelling a range of potential price

corrections that might be expected when a bubble terminates, from relatively slow gradual

adjustments in the price level to more rapid crashes; at the extreme, if a collapse to a lower

level occurs instantaneously, the stationary regime acts as an approximation, although typically

more gradual collapses are observed in practice as agents adjust their behaviour over a number

of time periods. The DGP in (1)-(2) also admits a bubble (or collapse) regime continuing to

the end of the sample period, on letting τ2,0 = 1 (or τ3,0 = 1). When δ1,T = 0, no explosive

regime is present in the data, and we assume δ2,T = 0 also in this case, so that collapse regimes

do not occur without a prior bubble.

The null hypothesis, H0, is that no bubble is present in the series and yt follows a unit root

process throughout the sample period, i.e. H0 : δ1,T = 0 (and hence δ2,T = 0). The alternative

hypothesis is given by H1 : δ1,T > 0, and corresponds to the case where a bubble is present in

the series, which either runs to the end of the sample (if τ2,0 = 1), or terminates in-sample,

either with or without a subsequent collapse regime depending on whether δ2,T = 0 or δ2,T > 0.

Assumption 1 coincides with the set of conditions adopted in Cavaliere and Taylor (2007,

2008a) for the case where εt is serially uncorrelated.1 The key assumption for the purposes of

this paper is that the innovation variance is non-stochastic, bounded and displays a countable

number of jumps. A detailed discussion of the class of variance processes allowed is given in

Cavaliere and Taylor (2007); this includes variance processes displaying (possibly) multiple one-

time volatility shifts (which need not be located at the same point in the sample as the putative

regimes associated with bubble behaviour), polynomially (possibly piecewise) trending volatil-

ity and smooth transition variance breaks, among others. The conventional homoskedasticity

assumption, that σt = σ for all t, is also permitted, since here ω(s) = σ for all s. Assumption

1 requires that the volatility process is non-stochastic and that zt is an IID sequence. These

1Generalisations to allow for serial correlation in εt will be discussed in section 5.4 below.
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restrictions are placed in order to simplify our analysis but can be weakened, without affecting

the main results of the paper, to allow for cases where ω (·) is stochastic and independent of
zt and where zt is a martingale difference sequence satisfying certain moment conditions; see

Cavaliere and Taylor (2009a) for further details.

A quantity which will play a key role in what follows is given by the following function in

C, known as the variance profile of the process:

η (s) :=

(∫ 1

0
ω (h)2 dh

)−1 ∫ s

0
ω (h)2 dh.

Observe that the variance profile satisfies η (s) = s under homoskedasticity while it deviates

from s in the presence of heteroskedasticity. Notice also that the quantity ω2 :=
∫ 1
0 ω (h)2 dh is

equal to the limit of T−1
∑T

t=1 σ
2
t , and may therefore be interpreted as the (asymptotic) average

innovation variance. We will also make use of the invariance principle from Theorem 1(i) of

Cavaliere and Taylor (2007), which establishes that

T−1/2
b·T c∑
j=1

εj
w→ ωW η(·)

where the process W η(r) :=
∫ r
0 dW (η(s)), W (r) denoting a standard Brownian motion on

[0, 1], is known as a variance-transformed Brownian motion, i.e. a Brownian motion under a

modification of the time domain; see, for example, Davidson (1994).

3 The PWY Test Procedure

In this section we briefly review the PWY procedure for detecting and date stamping explosive

bubbles, together with an alternative date stamping procedure developed recently in Harvey

et al. (2014). All of the material reviewed in this section is based on the assumption that the

innovation process, εt in DGP (1)-(2) is homoskedastic; that is, Assumption 1 with σt = σ for

all t.

The PWY statistic is used to test H0 against H1 in the context of (1)-(2), the alternative

being that yt behaves as an explosive AR(1) process for at least some sub-period of the sample.

In this context, and in the absence of knowledge concerning the timing of any potential explosive

behaviour, and the precise nature of any collapse behaviour, PWY propose a test based on the

supremum of recursive right-tailed DF tests. Specifically, for non-serially correlated εt, the

PWY statistic is given by

PWY := sup
τ∈[τ0,1]

DF τ

where DF τ denotes a standard DF statistic, that is the t-ratio for φ̂τ in the fitted ordinary

least squares [OLS] regression

∆yt = α̂τ + φ̂τyt−1 + ε̂t,τ (3)
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calculated over the sub-sample period t = 1, ..., bτT c; that is,

DF τ :=
φ̂τ√

σ̂2τ
/∑bτT c

t=2 (yt−1 − ȳτ )2

where ȳτ = (bτT c − 1)−1
∑bτT c

t=2 yt−1 and σ̂2τ = (bτT c − 3)−1
∑bτT c

t=2 ε̂2t,τ . The PWY statistic is

therefore the supremum of a sequence of forward recursive DF statistics with minimum sample

length bτ0T c. In what follows we follow PWY and set τ0 = 0.1. The PWY test rejects for

large values of the PWY statistic with selected critical values given in Table 1 of PWY. PWY

derive the limiting null distribution of the PWY statistic and show that the associated test is

consistent against H1.

If the PWY test signals a rejection then one would naturally wish to date stamp the emer-

gence and, where appropriate, collapse of the period of exuberance. In the context of a simplified

version of DGP (1)-(2) where the collapse (should one occur) happens instantaneously, PWY

propose a procedure to do this based on the sequence of forward recursive DF statistics used in

calculating the PWY supremum statistic. Specifically, they suggest locating the origin and con-

clusion of the explosive regime, by matching the time series of the recursive test statistic DFτ ,

with τ ∈ [τ0, 1], against right-tail critical values. That is, they propose the following estimates

of τ1,0 and τ2,0: τ̂1,0 := infτ≥τ0 {τ : DFτ > cvT (τ)} and τ̂2,0 := infτ≥τ̂1,0 {τ : DFτ < cvT (τ)},
where cvT (τ) is a critical value that needs to diverge to infinity as T diverges to ensure consistent

estimates under H1; appropriate settings to achieve this are discussed in detail in PWY.

In the context of the DGP in (1)-(2) where the possibility of a crash regime is retained,

Harvey et al. (2014) suggest an alternative date stamping approach based on BIC model

selection. Briefly, this procedure considers four possible DGPs arising from (1)-(2) under H1.

Namely,

DGP 1: δ1,T > 0, 0 < τ1,0 < 1, τ2,0 = 1

(unit root, then bubble to sample end)

DGP 2: δ1,T > 0, δ2,T = 0, 0 < τ1,0 < τ2,0 < 1

(unit root, then bubble, then unit root to sample end)

DGP 3: δ1,T > 0, δ2,T > 0, 0 < τ1,0 < τ2,0 < 1, τ3,0 = 1

(unit root, then bubble, then collapse to sample end)

DGP 4: δ1,T > 0, δ2,T > 0, 0 < τ1,0 < τ2,0 < τ3,0 < 1

(unit root, then bubble, then collapse, then unit root to sample end).

Four corresponding models are then fitted to capture each possible DGP:

Model 1: ∆yt = α̂1Dt(τ1, 1) + β̂1Dt(τ1, 1)yt−1 + ε̂1t

Model 2: ∆yt = α̂1Dt(τ1, τ2) + β̂1Dt(τ1, τ2)yt−1 + ε̂2t

Model 3: ∆yt = α̂1Dt(τ1, τ2) + α̂2Dt(τ2, 1) + β̂1Dt(τ1, τ2)yt−1 + β̂2Dt(τ2, 1)yt−1 + ε̂3t

Model 4: ∆yt = α̂1Dt(τ1, τ2) + α̂2Dt(τ2, τ3) + β̂1Dt(τ1, τ2)yt−1 + β̂2Dt(τ2, τ3)yt−1 + ε̂4t
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where Dt(a, b) = 1(baT c < t ≤ bbT c). In each case the change-point estimators are obtained by
minimising the sum of squared residuals across all permitted possibilities (subject to τ1 ≥ s,

τ2 − τ1 ≥ s, τ3 − τ2 ≥ s/2; we use s = 0.1 throughout), and subject to the requirement

that ybτ2T c > ybτ1T c and ybτ2T c > ybτ3T c, ensuring that the period from τ1 to τ2 is associated

with a (putative) upward explosive regime, and τ2 to τ3 associates with a downward stationary

collapse regime. In each model the final regime is permitted to be of any length, providing a

smooth segue from one model to another; see section 5 of Harvey et al. (2014) for full details.

A choice between these alternative estimated models is then made on the basis of the usual

BIC, penalising both the number of estimated dummy variable parameters and the number

of estimated regime change dates. Harvey et al. (2014) show that in the limit the model

corresponding to the true DGP is selected with probability one under H1 when the bubble (and

collapse) parameters are of fixed magnitudes. Moreover, the change-point estimators associated

with the selected model are such that bτ̂ iT c−bτ i,0T c
p→ 0, that is, the actual dates of the start

and end of the bubble (and collapse) periods are consistently estimated.

4 Asymptotic Behaviour of the PWY Test

In this section we analytically investigate the impact of non-stationary volatility of the form

given in Assumption 1 on the large sample behaviour of the PWY statistic under both H0 and

H1. Under H1 we consider local-to-unit root settings for the explosive and stationary regime

parameters, i.e. δi,T = ciT
−1, i = 1, 2, c1 > 0, c2 ≥ 0, the scalings by T−1 providing the

appropriate Pitman drifts for the DGP in (1)-(2).

In Theorem 1 we now provide the asymptotic distribution of the PWY statistic under H1,

the corresponding result under H0 being obtained as a special case thereof.

Theorem 1. Let {yt} be generated according to (1)-(2) under Assumption 1 and with δi,T =

ciT
−1, ci ≥ 0, i = 1, 2. Then,

PWY
w→ ω sup

τ∈[τ0,1]
Lηc1,c2(τ) =: Sηc1,c2 (4)

where

Lηc1,c2(τ) :=
1√

τ−1
∫ τ
0 ω (h)2 dh

∫ τ
0 K̃

η
c1,c2(r)dK

η
c1,c2(r)√∫ τ

0 K̃
η
c1,c2(r)

2dr

and

K̃η
c1,c2(r) := Kη

c1,c2(r)−
1
τ

∫ τ
0 K

η
c1,c2(s)ds
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with

Kη
c1,c2(r) :=



W η(r) r ≤ τ1,0
e(r−τ1,0)c1W η(τ1,0) +

∫ r
τ1,0

e(r−s)c1dW η(s) τ1,0 < r ≤ τ2,0
e−(r−τ2,0)c2

{
e(τ2,0−τ1,0)c1W η(τ1,0) +

∫ τ2,0
τ1,0

e(τ2,0−s)c1dW η(s)
}

+
∫ r
τ2,0

e−(r−s)c2dW η(s)
τ2,0 < r ≤ τ3,0

e−(τ3,0−τ2,0)c2
{
e(τ2,0−τ1,0)c1W η(τ1,0) +

∫ τ2,0
τ1,0

e(τ2,0−s)c1dW η(s)
}

+
∫ τ3,0
τ2,0

e−(τ3,0−s)c2dW η(s) +W η(r)−W η(τ3,0)
r > τ3,0.

�

The limiting representation given in (4) in Theorem 1 applies for the most general case of H1

with δ1,T > 0 and δ2,T > 0. The limit when a bubble occurs without collapse (i.e. δ1,T > 0,

δ2,T = 0) is readily obtained by setting c2 = 0 in the above expressions, while the limit

distribution under the null hypothesis, H0, obtains by setting c1 = c2 = 0. In the homoskedastic

case, where W η(r) = W (r), it can be shown that, in the limit, Pr(PWY > k), for any constant

k, is an increasing function of the explosive parameter c1, other things being equal. Essentially,

this arises as a consequence of the behaviour in the second regime of Kη
c1,c2(r) in L

η
c1,c2(τ),

and on setting τ = τ2,0. We conjecture that a similar result holds for the heteroskedastic

processes covered by Assumption 1, although a proof of a result of this level of generality

appears analytically intractable.

The limit distribution of PWY under the null hypothesis H0 is given by S
η
0,0, i.e. where

Kη
c1,c2(r) = W η(r). We now consider the asymptotic size of PWY for various forms of the

volatility function ω(s), s ∈ [0, 1], to assess the impact of different volatility specifications on

the reliability of the test. Specifically, we consider the following cases:

Case A. Single volatility shift: ω(s) = σ0 + (σ1 − σ0)1(s > τσ), τσ ∈ {0.3, 0.5, 0.7}. Here
volatility shifts permanently from σ0 to σ1 at break fraction s = τσ ∈ {0.3, 0.5, 0.7}.

Case B. Double volatility shift: ω(s) = σ0 + (σ1 − σ0)1(0.4 < s ≤ 0.6). Here volatility shifts

temporarily from σ0 to σ1 at break fraction s = 0.4 and then reverts to σ0 at break fraction

s = 0.6.

Case C. Logistic smooth transition in volatility: ω(s) = σ0 + (σ1− σ0) 1
1+exp{−50(s−0.5)} . In this

case, volatility changes smoothly from σ0 to σ1 with a transition midpoint of s = 0.5. The speed

of transition parameter ( 50) dictates that virtually all of the transition occurs between s = 0.4

and s = 0.6.

Case D. Trending volatility: ω(s) = σ0 + (σ1− σ0)s. Here volatility follows a linear trend from
σ0 when s = 0 to σ1 when s = 1.

For each of these volatility functions we simulate the asymptotic sizes of nominal 0.05-

level PWY tests, using the limit critical value obtained under homoskedasticity. We consider
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the range of values σ1/σ0 ∈ {1/6, 1/5, ..., 1/2, 1, 2, 3, ..., 6}, the setting σ1/σ0 = 1 giving the

homoskedastic case, so the test will always have asymptotic size of 0.05 here. The sizes are

computed using direct simulation of the limiting functionals appearing in Theorem 1, using 5,000

Monte Carlo replications, and approximating the Brownian motion processes in the limiting

functionals using NIID(0, 1) random variates, with the integrals approximated by normalized

sums of 1,000 steps.

Results for the single volatility shift are given in Figure 1 (a), (c), (e). When σ1/σ0 < 1,

some very modest under-sizing is observed, most evident for the earliest break fraction, τσ = 0.3.

It is also evident that the degree of under-sizing actually varies very little with the magnitude

of σ1/σ0. What is far more significant, however, is the over-size present when σ1/σ0 > 1. This

increases rapidly with σ1/σ0, pretty much irrespective of the break fraction, τσ, up to values

of around 0.70 when σ1/σ0 = 6. Figure 2 (a) shows results for the double volatility shift. A

temporary downward shift in volatility in this central region has little discernible effect on size,

while an upward shift again results in very serious over-sizing, following a very similar pattern

to that of the single upward shift in Figure 1. The same is true for the smooth transition in

volatility shown in Figure 2 (c), which is very similar to the single instantaneous shift case of

Figure 1 (c) where τσ = 0.5. The trending volatility case reported in Figure 2 (e) also exhibits

qualitatively similar behaviour to the shift/transition in volatility cases, and while the upward

size distortions are somewhat less exaggerated than in the other cases, asymptotic size still

exceeds 0.40 when σ1/σ0 = 6.

What the asymptotic size results presented above imply is that the impact of changing

volatility on the size of the PWY test can be quite severe. The effect of the volatility change is

very strongly dependent on the direction of the shift. If a unit root series exhibits some form of

downward shift in volatility at some point in, or indeed throughout, its evolution, then spurious

rejections of the unit root null are unlikely to arise. On the other hand, an upward shift can

very easily lead to spurious rejections of the unit root null in favour of the explosive alternative,

erroneously suggesting the presence of a bubble. The asymptotic results of Theorem 1 shed

little light as to why we should find this very marked asymmetry in size behaviour between

downward and upward patterns of changing volatility. Clearly, however, the combination of

low volatility followed by high volatility values of ∆yt, and the forward looking nature of the

DF regression in (3), is able to produce uncommonly (relative to the homoskedastic case) large

positive values of φ̂τ and DF τ , for at least some τ , effecting the over-sizing we observe. Because

we cannot realistically consider upward volatility shifts to be any less likely than downward shifts

(indeed their empirical relevance would appear unquestionable), we cannot be confident that

application of standard critical values for the PWY test will deliver a size-controlled procedure

in the presence of non-stationary volatility. In the next section we therefore consider a wild

bootstrap procedure intended to overcome these shortcomings.
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5 Wild Bootstrap PWY Tests and their Asymptotic Properties

As demonstrated in the previous section, non-stationary volatility introduces a time deforma-

tion aspect to the limiting distributions of the PWY statistic which alters its form vis-à-vis the

homoskedastic case. In this section we propose bootstrap analogues of the PWY tests based

on the wild bootstrap re-sampling scheme. As we shall demonstrate, this allows us to con-

struct bootstrap unit root tests that are asymptotically robust under the null to non-stationary

volatility of the form given in Assumption 1.

5.1 The Wild Bootstrap Algorithm

Our approach involves applying a wild bootstrap re-sampling scheme (see, inter alia, Wu,

1986; Liu, 1988; Mammen, 1993) to the first differences of the raw data and, as we will show,

allows us to construct bootstrap analogues of the PWY test which are asymptotically robust

to non-stationary volatility. In the context of the present problem, the wild bootstrap scheme

is required rather than a standard residual re-sampling scheme, such as the i.i.d. bootstrap,

because unlike these, the wild bootstrap can replicate the pattern of heteroskedasticity present

in the shocks; see the discussion immediately following Algorithm 1 below.

The following steps constitute our proposed bootstrap algorithm:

Algorithm 1

Step 1. Generate T bootstrap innovations ε∗t , as follows: ε
∗
1 = 0, ε∗t = wt∆yt, t = 2, ..., T ,

where {wt}Tt=2 denotes an independent N(0, 1) sequence.

Step 2. Construct the bootstrap sample as the partial sum process defined by

y∗t :=
t∑

j=1

ε∗j , t = 1, ..., T.

Step 3. Compute the bootstrap test statistic

PWY ∗ := sup
τ∈[τ0,1]

DF ∗τ

where DF ∗τ is the t-ratio on φ̂
∗
τ in the fitted OLS regression

∆y∗t = α̂∗τ + φ̂
∗
τy
∗
t−1 + ε̂∗t,τ

calculated over the sub-sample period t = 1, ..., bτT c, i.e.

DF ∗τ =
φ̂
∗
τ√

σ̂∗2τ
/∑bτT c

t=2

(
y∗t−1 − ȳ∗τ

)2
where ȳ∗τ = (bτT c − 1)−1

∑bτT c
t=2 y∗t−1 and σ̂

∗2
τ = (bτT c − 3)−1

∑bτT c
t=2 ε̂∗2t,τ .
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Step 4. Bootstrap p-values are computed as: p∗T := 1 − G∗T (PWY ), where G∗T (·) denotes the
conditional (on the original sample data) cumulative density function (cdf) of PWY ∗. Notice,

therefore, that the bootstrap test, run at the ξ significance level, based on PWY is then defined

such that it rejects the unit root null hypothesis, H0, if p∗T < ξ. �

Notice that the bootstrap innovations ε∗t replicate the pattern of heteroskedasticity present

in the original innovations because, conditionally on ∆yt, ε∗t is independent over time with

zero mean and variance (∆yt)
2. In practice the cdf G∗T (·) required in Step 4 of Algorithm

1 will be unknown but can be approximated in the usual way through numerical simulation.

This is achieved by generating N (conditionally) independent bootstrap statistics, say PWY ∗b ,

b = 1, ..., N , computed as in Algorithm 1 above. The simulated bootstrap p-value is then

computed as p̃∗T = N−1
∑N

b=1 1 (PWY ∗b > PWY ), and is such that p̃∗T
a.s.→ p∗T as N → ∞. An

approximate standard error for p̃∗T is given by (p̃∗T (1 − p̃∗T )/N)1/2; see Hansen (1996, p.419).

For a discussion on the choice of N see, inter alia, Davidson and MacKinnon (2000).

5.2 Asymptotic Properties

In Theorem 2, we now detail the large sample behaviour of the wild bootstrap PWY ∗ statistic

from Algorithm 1 under both H0 and H1.

Theorem 2. Under the conditions of Theorem 1, PWY ∗
w→p S

η
0,0. �

A comparison of the result for PWY ∗ in Theorem 2 with that given for PWY in Theorem 1

demonstrates the usefulness of the wild bootstrap; as the number of observations increases, the

wild bootstrapped statistic has the same first-order null distribution as the original test statistic.

From this result it follows, using the same arguments as in the proof of Theorem 5 in Hansen

(2000), that the wild bootstrap p-values are (asymptotically) uniformly distributed under the

unit root null hypothesis, leading to tests with (asymptotically) correct size in the presence of

conditional heteroskedasticity of the form given in Assumption 1. The wild bootstrap procedure

based on comparing PWY with bootstrap critical values (henceforth referred to as the PWY ∗

test) is therefore robust to non-stationary volatility in terms of asymptotic size, as seen in

Figures 1-2 where the asymptotic size of PWY ∗ is 0.05 for all σ1/σ0 settings. Most importantly,

this asymptotic size robustness property removes the potential for spurious rejections of H0 in

favour of a bubble when permanent upward changes in volatility occur but the series does not

contain an explosive autoregressive episode.

The result in Theorem 2, taken together with the result in Theorem 1, also implies im-

mediately that under Assumption 1 the wild bootstrap PWY ∗ test will also attain the same

asymptotic local power function as a size-adjusted implementation of the PWY test, where the

null critical values used for the latter are (infeasibly) adjusted to account for any heteroskedas-

ticity present in the innovations. Hence we would anticipate that the finite sample power of

PWY ∗ should be approximately the same as the size-adjusted power of PWY. In the case where
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volatility is constant, Theorem 2 also then implies that there is no loss in asymptotic power,

relative to using the PWY test, from using its wild bootstrap analogue.

5.3 Fixed Magnitude Bubble Alternatives

Thus far we have considered alternatives H1 where the magnitude of the bubble (and collapse)

parameters are local-to-zero. Under this specification, the simple wild bootstrap procedure

from Algorithm 1 based on the first differences of yt is suffi cient to allow the bootstrap test

statistic to recover the null distribution associated with PWY in large samples. However, it is

also important to consider the impact of non-local bubble magnitudes, and we now examine the

behaviour of PWY and PWY ∗ under H1 when the δi.T parameters are of a fixed magnitude,

that is, δi,T = δi > 0, i = 1, 2. To that end, the large sample behaviour of the PWY and

PWY ∗ statistics in this context is given in the following theorem.

Theorem 3. Let {yt} be generated according to (1)-(2) under Assumption 1 and with δi,T =

δi > 0, i = 1, 2. Then as T → ∞, so PWY diverges to +∞ at a rate as least as fast as

bτ1,0T 1/2c (1 + δ1)
(bτ2,0T c−bτ1,0T c), while PWY∗ is of Op(T 1/2). �

The practical consequence of the results in Theorem 3 is that the bootstrap PWY ∗ test is

consistent against fixed alternatives. This holds because the bootstrap statistic (and, hence,

the bootstrap critical values) diverge at a polynomial rate in T , whereas the original PWY

statistic diverges (to +∞) at an exponential rate in T . While this establishes the consistency
of the PWY ∗ test against fixed magnitude bubble alternatives it also shows that the rate of

consistency for the bootstrap test is slower than that for the original PWY test. This opens

up the possibility that the bootstrap test may not be as powerful as the standard test, even

where the latter is (infeasibly) adjusted to account for heteroskedasticity. However, given the

significant difference between the rates of divergence of the PWY and PWY ∗ statistics under

fixed magnitude alternatives we might expect the loss in power to be rather small in practice.

The issue raised above is a consequence of the fixed magnitude nature of the bubble (and

collapse) parameters rather than the presence of non-stationary volatility in the data, since the

rates of divergence of the statistics given in Theorem 3 clearly do not depend on whether the

innovations are heteroskedastic or homoskedastic. To that end, assuming for now that the data

were homoskedastic, an alternative bootstrap scheme that achieves the same rate of consistency

and asymptotic local power function as the (infeasible) size-adjusted PWY test under fixed and

local-to-zero bubble magnitude alternatives, respectively, can be constructed by utilising the

BIC model selection procedure of Harvey et al. (2014) outlined in section 3. To that end, let ε̂Bt,

t = 2, ..., T , denote the residuals from the BIC-selected estimated model using the Harvey et al.

(2014) procedure. This alternative bootstrap scheme involves modifying Step 1 of Algorithm 1

to generate bootstrap innovations using ε̂Bt, t = 2, ..., T , in place of ∆yt, t = 2, ..., T . Harvey

et al. (2014) show their procedure guarantees in the context of (1)-(2) that the correct model

and the correct regime change dates will be identified in the limit in the presence of a fixed
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magnitude bubble (and collapse) and, hence, that the effect of the bubble/collapse will be

purged from the ε̂Bt residuals in suffi ciently large samples. As a consequence, and denoting the

wild bootstrap statistic which results from this scheme by PWY ∗B, it can be seen that under

the conditions of Theorem 3 and assuming homoskedasticity, PWY ∗B
w→p S0,0, where S0,0 is

used to denote Sη0,0 from Theorem 1 when ω(s) = σ, for all s, in Assumption 1. Consequently,

and unlike the PWY ∗ test, in the limit the PWY ∗B test will be consistent at the same rate

as the (infeasibly) size-adjusted PWY test under fixed bubble magnitudes. The convergence

result above will also hold under both H0 and local alternatives, H1, of the form considered

in Theorems 1 and 2, such that the large sample behaviour of PWY ∗B will parallel that of

PWY ∗ in these cases. We conjecture that allowing heteroskedasticity of the form considered

in Assumption 1 would not change these large sample results (other than by replacing S0,0

with Sη0,0 in the convergence result above), because the large sample properties outlined above

for the BIC procedure of Harvey et al. (2014) should not be altered by the presence of such

heteroskedasticity.

We will return to this issue in section 6 when we evaluate the finite sample power properties

of the tests, including a comparison of the PWY ∗ and PWY ∗B tests.

5.4 Accounting for Serial Correlation

Finally in this section we discuss how the material given thus far can be generalised to allow for

serial correlation in εt. To do so we allow for a very general pattern of possible weak dependence

in εt through the linear process

εt = C(L)σtzt =
∞∑
j=0

Cjσt−jzt−j

where C(z) is assumed to satisfy standard summability and invertibility conditions, viz.,
∑∞

j=0 j|Cj |
<∞ and C (z) 6= 0 for all |z| ≤ 1, respectively. These conditions are satisfied, for example, by

all stable and invertible finite-order ARMA processes. In this case, provided that the sub-sample

regressions (3) used to construct PWY are augmented by inclusion of the lagged-difference re-

gressors ∆yt−1, ...,∆yt−p, where p is chosen such that, as T → ∞, 1/p + p3/T → 0, it can be

shown that the asymptotic results regarding PWY in Theorem 1 remain unaltered. Moreover,

none of the large sample results stated in this section relating to the bootstrap PWY ∗ and

PWY ∗B statistics are reliant on the absence of serial correlation in εt; this is the case because

the wild bootstrap re-sampling device used in Step 1 of Algorithm 1 annihilates any weak de-

pendence present in either ∆yt in the context of PWY ∗ or ε̂Bt in the context of PWY ∗B. A

particular implication of this is that there is no requirement to augment the sub-sample regres-

sions underlying the bootstrap procedures PWY ∗ and PWY ∗B with lagged-difference regressors

for the foregoing large sample properties of these two bootstrap procedures to continue to hold

when εt is weakly dependent. In fact, the results stated in Theorems 2 and 3 remain valid for

any lag length, p∗ say, in the bootstrap analogue of (3) such that p∗/T 1/3 → 0 as T → ∞.
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Re-coloured versions of our bootstrap procedures, constructed along the lines considered in

Cavaliere and Taylor (2009b), could therefore also be considered.

6 Finite Sample Properties

In this section we use Monte Carlo simulation methods to compare the finite sample size and

power properties of the original PWY test and the two new bootstrap tests PWY ∗ and PWY ∗B
proposed in section 5 (all constructed without lagged-difference augmentation). Using the DGP

(1)-(2) we set µ = 0 (without loss of generality), u1 = ε1 and generate zt as IIDN(0, 1), for

a sample of size T = 200. Here εt = σtzt, where σt = ω (t/T ) is the discrete time analogue

of the volatility functions given by Cases A-D in section 4. All simulations are conducted at

the nominal asymptotic 0.05 level using 5,000 Monte Carlo replications and N = 499 bootstrap

replications. In sections 6.1 and 6.2 below, we present results for finite sample size and power,

respectively.

6.1 Empirical Size

Finite sample (empirical) size results for PWY, PWY ∗ and PWY ∗B are given in Figure 1 (b),

(d), (f) and Figure 2 (b), (d), (f). When σ1/σ0 < 1, they each bear a close resemblance to

their asymptotic counterparts in Figure 1 (a), (c), (e) and Figure 2 (a), (c), (e), respectively.

When σ1/σ0 > 1, on the whole the same is also true, although PWY ∗ and PWY ∗B are now

both a little over-sized, with PWY ∗B generally being the more distorted of the two. Of course,

it is when σ1/σ0 > 1 that the bootstrap tests have their work cut out in attempting to mimic

a size-correction exercise for PWY, since the latter has greatly inflated size in these situations.

Taking into account the magnitude of the over-size present for PWY, it is fair to say that both

PWY ∗ and PWY ∗B are doing a very effective job in terms of controlling finite sample size

here. Overall, it is encouraging to see that the predictions of the asymptotic theory provided

in section 5 for the proposed bootstrap test procedures broadly carry over to sample sizes of

empirical relevance. As such, the wild bootstrap PWY ∗ and PWY ∗B tests provide an approach

to testing for the presence of a bubble that, unlike the original PWY test, are not susceptible

to spuriously indicating the presence of a bubble when the series follows a unit root process

driven by innovations which display some form of increasing volatility.

6.2 Empirical Power

To examine the finite sample powers of PWY, PWY ∗ and PWY ∗B, we consider the set of

bubble magnitudes δ1,T = δ1 ∈ {0.02, 0.04, 0.06, 0.08} for the non-collapsing case δ2,T = 0,

along with the bubble regime timings τ1,0 = 0.4 and τ2,0 = 0.6. This setting, combined with

the volatility functions given in Cases B or C of section 4, represent examples where the volatility

changes occur at (or around) the start and end of the bubble regime, while for the volatility
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functions given in Cases A and D, the volatility change timings are unrelated to the timing

of the bubble. In cases where a simulated DGP resulted in a downward explosive regime (i.e.

if ybτ2,0T c < ybτ1,0T c) due to the explosive period originating with a negative value of ybτ1,0T c,

we multiplied the simulated series by −1, so as to ensure that all generated series had upward

explosive regimes. Tables 1 and 2 report results for the discrete time analogues of the four

volatility functions in Cases A-D for the settings σ1/σ0 ∈ {1/6, 1/3, 1, 3, 6}; the case δ1 = 0 is

also included to represent size. All three tests have different finite sample sizes, depending on

the volatility function A-D. While, when comparing power properties, the differences between

the empirical sizes of the two bootstrap procedures PWY ∗ and PWY ∗B can largely be ignored,

the differences between their empirical sizes and those of the original PWY test cannot, since

the potential for PWY to be over-sized would render raw power comparisons meaningless.

In what follows then, in addition to reporting the raw powers of PWY, we also report two

additional (infeasible) size-adjusted powers for PWY. These are PWY adj
1 and PWY adj

2 which,

for a given volatility function, are the powers of PWY when its size is adjusted to match those

of PWY ∗ and PWY ∗B, respectively.

In Table 1 we provide finite sample (empirical) powers under the discrete time analogue

of volatility function A, the single volatility shift. The first thing to note is that, across all

the volatility settings, each of the tests has power that rises monotonically with δ1. The

powers of PWY ∗ and PWY adj
1 are always very close to each other, as are those of PWY ∗B and

PWY adj
2 . Essentially then, neither PWY ∗ nor PWY ∗B lose any finite sample power relative

to the appropriately size-adjusted PWY test. It is also important to note that the powers of

PWY ∗ and PWY ∗B are always very similar. In those few cases where PWY
∗
B appears a little

more powerful than PWY ∗, generally for the smaller values of δ1, this could quite reasonably

be ascribed to the former’s slightly higher corresponding empirical size. It is also worth noting

that the timing of the volatility shift appears to have little effect on power. On the other

hand (with the exception of the unadjusted PWY test), upward volatility shifts do appear to

be associated with lower levels of power, relative to the homoskedastic case or the downward

volatility shift cases. Of course, these represent cases where the size of the original PWY test

is very high, so this is perhaps hardly surprising. Table 2 shows the results for the volatility

functions B-D. In each case we again see that the empirical powers of PWY ∗, PWY ∗B, PWY
adj
1

and PWY adj
2 increase with δ1. As was the case with volatility function A, the powers are all

fairly similar among these tests, and upward shifts in volatility, which cause PWY to be over-

sized, are associated with lower levels of power. It appears that the specific form of volatility

only affects the power of PWY ∗ and PWY ∗B in as much as it affects the size of PWY. That

we observe the powers of PWY ∗ and PWY ∗B to be so similar also suggests that, in practice,

the simpler PWY ∗ procedure gives away little or nothing to its more elaborate model-based

counterpart, and that the potential power issue under a fixed bubble magnitude specification

discussed in section 5.3 does not appear to be a concern in practice.

Taking our finite sample size and power results together, we find that both of our proposed
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wild bootstrap procedures PWY ∗ and PWY ∗B are effective in restoring size control in the

presence of non-stationary heteroskedasticity whilst simultaneously maintaining available levels

of power. While PWY ∗B has certain theoretical power advantages over PWY
∗, this property

does not appear to translate into any discernible finite sample power advantage in practice.

An argument could also be made for using PWY ∗ on the grounds that it is not model-based

and does not require a particular specification for the collapse regime, nor does it require a

unit root regime prior to the onset of a bubble (i.e. the bubble regime can begin at the very

start of the process), unlike PWY ∗B. However, even if PWY
∗
B mis-specifies the bubble regime

in some way, the fact that PWY ∗ has the same power levels as PWY ∗B suggests that precise

modelling of the bubble and collapse regimes is not critical for competitive power, so potential

concerns regarding, say, the nature of a bubble’s collapse, are not pertinent in this problem.

Overall, given the very close similarity in performance between PWY ∗ and PWY ∗B, we would

recommend the use of PWY ∗ in practice, since it is simpler to compute, and has marginally

better finite sample size properties.

7 An Empirical Illustration

As an empirical application of our new bootstrap approach we consider several commodity

price time series. The demand for many primary and intermediate commodities increased

substantially between the end of the dot-com crash in 2001 and the 2007-2009 global financial

crisis, driven by strong global economic growth over this period (with particularly strong growth

in the BRIC countries). As a consequence, for many commodities over this period significant

price rises occurred, followed by significant price falls as a consequence of the 2007-2009 financial

crisis. This feature of commodity prices has led several researchers to employ PWY-type tests to

investigate the possibility that some commodity price series over this period may have contained

periods of explosive autoregressive behaviour consistent with the presence of a speculative

bubble. Applying the PWY test to data from 2000-2009, Gilbert (2010) finds strong evidence

of bubbles in the copper market, weaker evidence of bubbles in the nickel and crude oil market,

and no evidence of bubbles in the aluminium market, Using a modified version of the PWY

test, Phillips and Yu (2010, 2011) find evidence of explosive autoregressive behaviour in the

crude oil market and platinum market in 2008. Homm and Breitung (2012) apply the PWY

test to two commodity price series - crude oil and gold over the period 1985-2010. They find

statistically significant evidence of explosive autoregressive behaviour in the gold price series in

the late-2000s, but no significant evidence for the crude oil price series.2

Many of the papers which test for speculative bubbles in commodity prices using PWY-

type tests do so using samples of data that span periods of global financial and macroeconomic

2Note that for commodity prices the underlying fundamental (equivalent to the dividend for stocks) is an

unobserved ‘convenience yield’. Hence studies of speculative bubbles in commodity prices typically focus only on

detecting explosive autoregressive behaviour in the price series and/or the natural logarithm of the price series.
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instability. For example, the applied studies referred to in the previous paragraph employ

samples of data that span the period before the 2007-2009 financial crisis when global economic

growth was strong and financial market volatility was generally quite low, and the period during

and immediately after the financial crisis when there was a high level of uncertainty in financial

markets and when many countries experienced the start of a significant recession. Therefore

it seems highly likely that, even if a bubble did not exist during the sample periods examined

in these studies, the unconditional volatility of the first differenced price series would not be

constant over the samples considered. Hence, our bootstrap approach might prove to be useful

in this context.

A further reason to advocate the use of our bootstrap approach when testing for bubbles

in commodity prices is that several previous empirical studies of commodity price volatility

over this period have indeed found statistically significant evidence of non-constancy in the un-

conditional volatility of the first differenced series. For example, using long-run monthly data

that includes the 2007-2009 crisis period Calvo-Gonzalez et al. (2010) employ the CUSUM

methodology of Inclan and Tiao (1994) and Kokoszka and Leipus (1999) to search for struc-

tural breaks in the unconditional volatility of the returns series for 45 commodities. They find

statistically significant evidence of breaks for many of the commodities examined. Interest-

ingly, Calvo-Gonzalez et al. (2010) conclude that the timing of the structural breaks detected

is idiosyncratic and that there is no consistent pattern to the results across the individual com-

modities. Also using CUSUM-type tests, Ewing and Malik (2010) find evidence of multiple

volatility breaks in daily data on the WTI crude oil price over the period 1993-2008, including

a break at the start of the 2007-2009 financial crisis. Vivian and Wohar (2012) apply CUSUM-

type tests to investigate structural breaks in the volatility of daily returns for 28 commodities

over the period 1985-2010. They find some evidence of breaks corresponding to the 2007-2009

financial crisis, but also find that structural breaks in volatility often occur in non-crisis periods.

Similarly to Calvo-Gonzalez et al. (2010), Vivan and Wohar (2012) conclude that there is no

consistent pattern to the timing of breaks across individual commodities.

The application reported here focuses on the prices of two types of crude oil (Brent and

West Texas Intermediate (WTI)), three precious metals (gold, silver and platinum) and two

non-ferrous metals (aluminium and copper). Results are reported for nominal weekly data

and real monthly data, using the US CPI as a deflator. The oil prices are spot prices from

the Energy Information Administration. The precious metals prices are spot prices from the

London Bullion Market and the London Platinum and Palladium Market; the non-ferrous metal

prices are three-month futures prices from the London Metals Exchange. In all cases the sample

period starts at the beginning of January 2000 and finishes at the end of December 2013, giving

168 monthly observations and 731 weekly observations.3 All of the commodity price series were

3Note that in some of the previous research on commodity price bubbles using PWY-type tests raw prices

are used, whilst in other studies the natural logarithms of the prices are used. Here we report results using raw

price data.
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downloaded using Thomson Reuters Datastream, and the CPI data was downloaded from the

Federal Reserve Bank of Louis FRED database. The levels and first-differences of the series

are plotted in Figures 3 and 4, for the monthly and weekly series respectively. A simple visual

analysis of these plots suggests that the assumption of stationary unconditional volatility is

unrealistic for these series, with commodity volatility appearing to increase over the sample

period in most cases.

To investigate more formally for the possible presence of non-stationary volatility in these

series, in Table 3 we report results from application of the stationary volatility tests of Cavaliere

and Taylor (2008b, pp. 311—312). We apply all four of their proposed tests (HKS , HR, HCVM
and HAD, using a Bartlett long run variance estimator with lag truncation parameter 4), and
to mitigate possible confounding effects of any bubble/collapse that might be present, for each

series we compute the tests employing the fitted residuals from the BIC-selected bubble model

of Harvey et al. (2014) outlined in section 3, i.e. ε̂Bt of section 5.3. It can be seen that for each

of the commodities and for both the monthly and weekly series there is statistically significant

evidence against the null of stationary volatility from at least one of the tests at conventional

significance levels. As might be expected given the relative sample sizes involved, the evidence

is stronger for the weekly data than for the monthly data, with a rejection delivered by all of

the tests at the 0.01-level when the former is used. For the monthly data the HAD test yields
the most evidence among the four tests for non-stationary volatility in the data, while the HR
test provides the least. Interestingly, the Monte Carlo simulations reported in Cavaliere and

Taylor (2008b) reveal that when there is a single discrete break in volatility, or when volatility

follows a linear trend, the HAD test has the greatest finite sample power and is noticeably more
powerful than the HR test, which is the least powerful of the four tests. In contrast for the case
of two discrete structural breaks in volatility, Cavaliere and Taylor (2008b) find that the HR
test is now the most powerful of the four tests. Thus, when considered alongside the simulation

results in Cavaliere and Taylor (2008b), the overall pattern of the results in Table 3 suggests

that perhaps a single discrete break volatility model, or a trending volatility model, is more

likely to be appropriate than a multiple break volatility model.

We now turn to testing for the presence of speculative bubbles in the commodities data. To

that end, for each series we report in Table 4 the outcome of the PWY test statistic, along with

the corresponding p-value (calculated under the assumption of homoskedastic errors by Monte

Carlo simulation) for the standard PWY test, together with wild bootstrap p-values, computed

as in Algorithm 1 and also using the BIC-based variant of Algorithm 1 discussed in section 5.3,

using N = 9999 bootstrap replications in each case. In computing the PWY statistics we

allowed for a maximum of six lagged-differenced regressors to account for serial correlation and

selected the lag length by BIC (the sub-sample regressions underlying the bootstrap procedures

PWY ∗ and PWY ∗B do not include lagged-difference augmentation; see the discussion in section

5.4).

The results in Table 4 show that the standard PWY test rejects the unit root null hypothesis
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in favour of the explosive alternative at the 0.01-level for all of the series considered in both

the monthly and weekly data, in each case providing very strong evidence for the presence of a

speculative bubble; indeed, most of the p-values are at or very close to zero. When considering

the wild bootstrap PWY ∗ and PWY ∗B tests, which are robust to the presence of non-stationary

volatility in the data, we find much less emphatic evidence for speculative bubble behaviour. For

the monthly data, 0.01-level rejections are obtained by the PWY ∗ and PWY ∗B tests only for the

copper series. Moreover, the PWY ∗ test (which displayed the best finite sample size control in

the simulations) does not deliver rejections at the 0.05-level for any other commodity, although

some weaker 0.10-level rejections are obtained for Brent oil, gold, silver and aluminium. The

PWY ∗B p-values are always lower than the corresponding PWY
∗ p-values, as might be expected

given their finite sample properties, and more evidence in favour of a bubble is therefore found

by this test at the 0.05- and 0.10-levels. For the case of weekly data, no 0.01-level rejections

are found by PWY ∗, while a 0.01-level rejection is only obtained by PWY ∗B for copper. At the

0.05-level, the PWY ∗ test rejects for Brent oil, silver and copper, while evidence for a bubble

is only found at the 0.10-level for the remaining series. Again, the PWY ∗B p-values are found

to be lower than those for PWY ∗, but no additional 0.05-level rejections are seen.

Our results therefore show that the use of critical values that are robust to the presence

of non-stationary unconditional volatility lead to much less clear evidence of bubble behaviour

than when critical values are used that assume stationary unconditional volatility. The fact that

the bootstrap PWY ∗ and PWY ∗B tests control size under non-stationary volatility yet do not

lose power relative to the PWY tests under stationary volatility (see the Monte Carlo results

reported in sections 6.2 and 6.3), combined with the results from Table 3 where the hypothesis

of stationary volatility is rejected for all of the series, would suggest that the standard PWY

test results are likely to be an overstatement of the evidence for bubbles in these series, with

the more equivocal findings of the PWY ∗ and PWY ∗B tests providing a more reliable indicator

of the presence or absence of speculative bubbles.

8 Conclusions

In this paper we have explored the impact that non-stationary volatility has on the performance

of the test for explosive financial bubbles based on sub-sample Dickey-Fuller statistics proposed

in Phillips et al. (2011). Numerical and analytical evidence was presented that showed that

empirically relevant models of non-stationary volatility can have potentially serious implica-

tions for the reliability of this test, with size often being substantially above the nominal level,

thereby giving rise to spurious indications of explosive behaviour in the data. To address this

problem we have proposed wild bootstrap-based implementations of the Phillips et al. (2011)

test, these having proved to be highly successful in other unit root testing applications. The

proposed bootstrap tests have the considerable advantage that they are not tied to a given para-

metric model of volatility within the class of non-stationary volatility processes considered. The
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asymptotic validity of our proposed bootstrap tests within the class of non-stationary volatility

considered was demonstrated and Monte Carlo simulation evidence was provided which showed

them to be effective in controlling finite sample size under non-stationary volatility. Moreover,

the bootstrap tests were found not to sacrifice power relative to infeasibly size-correcting the

original test. We also provided an empirical application involving commodity price time series

and found considerably less clear evidence for the presence of speculative bubbles in these data

when using our proposed wild bootstrap implementations of the Phillips et al. (2011) test.

We conclude with a suggestion for further research. The testing procedure developed in

Phillips et al. (2011) is directed towards processes which, under the alternative hypothesis,

admit one explosive sub-sample regime. Ongoing, but as yet unpublished research, in Phillips

et al. (2013) extends the methodology of the Phillips et al. (2011) to allow for the possibility of

multiple bubble regimes under the alternative. For such tests the challenges raised in this paper

regarding the impact of non-stationary volatility on inference will also be germane. There is no

reason to suppose, however, that the wild bootstrap methodology outlined here could not be

successfully applied to the tests proposed in Phillips et al. (2013) to deliver tests which have

good power to detect multiple bubbles but which at the same time would not be induced to

reject the no bubble null hypothesis because of the presence of non-stationary volatility in the

data.

A Appendix

Without loss of generality we can set µ = 0 and u1 = 0 in what follows.

A.1 Proof of Theorem 1

By backward substitution in (1) we obtain

yt =



∑t
i=1 εi t = 2, ..., bτ1,0T c

(1 + δ1,T )t−bτ1,0T c
∑bτ1,0T c

i=1 εi t = bτ1,0T c+ 1, ..., bτ2,0T c
+
∑t

i=bτ1,0T c+1(1 + δ1,T )t−iεi

(1− δ2,T )t−bτ2,0T c{(1 + δ1,T )bτ2,0T c−bτ1,0T c
∑bτ1,0T c

i=1 εi t = bτ2,0T c+ 1, ..., bτ3,0T c
+
∑bτ2,0T c

i=bτ1,0T c+1(1 + δ1,T )bτ2,0T c−iεi}
+
∑t

i=bτ2,0T c+1(1− δ2,T )t−iεi

(1− δ2,T )bτ3,0T c−bτ2,0T c{(1 + δ1,T )bτ2,0T c−bτ1,0T c
∑bτ1,0T c

i=1 εi t = bτ3,0T c+ 1, ..., T

+
∑bτ2,0T c

i=bτ1,0T c+1(1 + δ1,T )bτ2,0T c−iεi}
+
∑bτ3,0T c

i=bτ2,0T c+1(1− δ2,T )bτ3,0T c−iεi +
∑t

i=bτ3,0T c+1 εi
(A.1)
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and subsequently

T−1/2ybrT c =

T−1/2



∑brT c
i=1 εi brT c = 2, ..., bτ1,0T c

(1 + δ1,T )brT c−bτ1,0T c
∑bτ1,0T c

i=1 εi brT c = bτ1,0T c+ 1, ..., bτ2,0T c
+
∑brT c

i=bτ1,0T c+1(1 + δ1,T )brT c−iεi

(1− δ2,T )brT c−bτ2,0T c{(1 + δ1,T )bτ2,0T c−bτ1,0T c
∑bτ1,0T c

i=1 εi brT c = bτ2,0T c+ 1, ..., bτ3,0T c
+
∑bτ2,0T c

i=bτ1,0T c+1(1 + δ1,T )bτ2,0T c−iεi}
+
∑brT c

i=bτ2,0T c+1(1− δ2,T )brT c−iεi

(1− δ2,T )bτ3,0T c−bτ2,0T c{(1 + δ1,T )bτ2,0T c−bτ1,0T c
∑bτ1,0T c

i=1 εi brT c = bτ3,0T c+ 1, ..., T.

+
∑bτ2,0T c

i=bτ1,0T c+1(1 + δ1,T )bτ2,0T c−iεi}
+
∑bτ3,0T c

i=bτ2,0T c+1(1− δ2,T )bτ3,0T c−iεi +
∑brT c

i=bτ3,0T c+1 εi

Under δi = ci/T , for 0 < a < b < 1, (1 + δ1)
bbT c−baT c = e(b−a)c1 + o(1) and (1− δ2)bbT c−baT c =

e−(b−a)c2 + o(1), and then, following Phillips (1987) we find

T−1/2ybrT c
w→ ω



W η(r) r ≤ τ1,0
e(r−τ1,0)c1W η(τ1,0) +

∫ r
τ1,0

e(r−s)c1dW η(s) τ1,0 < r ≤ τ2,0
e−(r−τ2,0)c2

{
e(τ2,0−τ1,0)c1W η(τ1,0) +

∫ τ2,0
τ1,0

e(τ2,0−s)c1dW η(s)
}

τ2,0 < r ≤ τ3,0
+
∫ r
τ2,0

e−(r−s)c2dW η(s)

e−(τ3,0−τ2,0)c2
{
e(τ2,0−τ1,0)c1W η(τ1,0) +

∫ τ2,0
τ1,0

e(τ2,0−s)c1dW η(s)
}

r > τ3,0

+
∫ τ3,0
τ2,0

e−(τ3,0−s)c2dW η(s) +W η(r)−W η(τ3,0)

= ωKη
c1,c2(r)

Also,

∆yt =



εt t = 2, ..., bτ1,0T c
εbτ1,0T c+1 + δ1,T

∑bτ1,0T c
i=1 εi t = bτ1,0T c+ 1

εt + δ1,T (1 + δ1,T )t−bτ1,0T c−1
∑bτ1,0T c

i=1 εi t = bτ1,0T + 2c, ..., bτ2,0T c
+δ1,T

∑t−1
i=bτ1,0T c+1(1 + δ1,T )t−1−iεi

εbτ2,0T c+1 − δ2,T (1 + δ1,T )bτ2,0T c−bτ1,0T c
∑bτ1,0T c

i=1 εi t = bτ2,0T c+ 1

−δ2,T
∑bτ2,0T c

i=bτ1,0T c+1(1 + δ1,T )bτ2,0T c−iεi

εt − δ2,T (1− δ2,T )t−bτ2,0T c−1{(1 + δ1,T )bτ2,0T c−bτ1,0T c
∑bτ1,0T c

i=1 εi t = bτ2,0T + 2c, ..., bτ3,0T c
+
∑bτ2,0T c

i=bτ1,0T c+1(1 + δ1,T )bτ2,0T c−iεi}
−δ2,T

∑t−1
i=bτ2,0T c+1(1− δ2,T )t−i−1εi

εt t = bτ3,0T c+ 1, ..., T
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so

∆yt =



εt t = 2, ..., bτ1,0T c
εbτ1,0T c+1 +Op(T

−1/2) t = bτ1,0T c+ 1

εt +Op(T
−1/2) t = bτ1,0T + 2c, ..., bτ2,0T c

εbτ2,0T c+1 +Op(T
−1/2) t = bτ2,0T c+ 1

εt +Op(T
−1/2) t = bτ2,0T + 2c, ..., bτ3,0T c

εt t = bτ3,0T c+ 1, ..., T.

Then, since it is easily shown that σ̂2τ = bτT c−1
∑bτT c

t=1 ∆y2t + op(1) and bτT c−1
∑bτT c

t=1 ∆y2t
p→

τ−1
∫ τ
0 ω (h)2 dh, we find that σ̂2τ

p→ τ−1
∫ τ
0 ω (h)2 dh. The stated limit for PWY then follows

from an application of the Continuous Mapping Theorem (CMT).

A.2 Proof of Theorem 2

For brevity, we will only present results for DGP 4 under H1. Results for DGPs 1-3 are simply

obtained as special cases. According to our bootstrap algorithm,

T−1/2y∗brT c = T−1/2
brT c∑
j=1

ε∗j

with ε∗j = wj∆yj . Now,

wj∆yj =

wjεj j = 2, ..., bτ1,0T c
wbτ1,0T c+1εbτ1,0T c+1 + wbτ1,0T c+1δ1,T

∑bτ1,0T c
i=1 εi j = bτ1,0T c+ 1

wjεj + wjδ1,T (1 + δ1,T )j−bτ1,0T c−1
∑bτ1,0T c

i=1 εi j = bτ1,0T + 2c, ..., bτ2,0T c
+wjδ1,T

∑j−1
i=bτ1,0T c+1(1 + δ1,T )j−1−iεi

wbτ2,0T c+1εbτ2,0T c+1 − wbτ2,0T c+1δ2,T (1 + δ1,T )bτ2,0T c−bτ1,0T c
∑bτ1,0T c

i=1 εi j = bτ2,0T c+ 1

−wbτ2,0T c+1δ2,T
∑bτ2,0T c

i=bτ1,0T c+1(1 + δ1,T )bτ2,0T c−iεi

wjεj − wjδ2,T (1− δ2,T )j−bτ2,0T c−1{(1 + δ1,T )bτ2,0T c−bτ1,0T c
∑bτ1,0T c

i=1 εi j = bτ2,0T + 2c, ..., bτ3,0T c
+
∑bτ2,0T c

i=bτ1,0T c+1(1 + δ1,T )bτ2,0T c−iεi}
−wjδ2,T

∑j−1
i=bτ2,0T c+1(1− δ2,T )j−i−1εi

wjεj j = bτ3,0T c+ 1, ..., T

so

T−1/2y∗brT c = T−1/2
brT c∑
j=2

wjεj +


p1 brT c = bτ1,0T c+ 1

p1 + p2 brT c = bτ1,0T + 2c, ..., bτ2,0T c
p1 + p2 + p3 brT c = bτ2,0T c+ 1

p1 + p2 + p3 + p4 brT c = bτ2,0T + 2c, ..., T
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where

p1 = T−1/2wbτ1,0T c+1δ1,T
∑bτ1,0T c

i=1 εi

p2 = T−1/2
∑brT c

j=bτ1,0T+2cwjδ1,T (1 + δ1,T )j−bτ1,0T c−1
∑bτ1,0T c

i=1 εi

+T−1/2
∑brT c

j=bτ1,0T+2cwjδ1,T
∑j−1

i=bτ1,0T c+1(1 + δ1,T )j−1−iεi

p3 = −T−1/2wbτ2,0T c+1δ2,T (1 + δ1,T )bτ2,0T c−bτ1,0T c
∑bτ1,0T c

i=1 εi

−T−1/2wbτ2,0T c+1δ2,T
∑bτ2,0T c

i=bτ1,0T c+1(1 + δ1,T )bτ2,0T c−iεi

p4 = −T−1/2
∑brT c

j=bτ2,0T+2cwjδ2,T (1− δ2,T )j−bτ2,0T c−1{(1 + δ1,T )bτ2,0T c−bτ1,0T c
∑bτ1,0T c

i=1 εi

+
∑bτ2,0T c

i=bτ1,0T c+1(1 + δ1,T )bτ2,0T c−iεi} − T−1/2
∑brT c

j=bτ2,0T+2cwjδ2,T
∑j−1

i=bτ2,0T c+1(1− δ2,T )j−i−1εi.

Also,

p1 = T−1c1wbτ1,0T c+1T
−1/2∑bτ1,0T c

i=1 εi

= Op(T
−1)

p2 = T−1/2c1T
−1/2∑brT c

j=bτ1,0T+2cwj(1 + δ1,T )j−bτ1,0T c−1T−1/2
∑bτ1,0T c

i=1 εi

+T−1/2c1T
−1/2∑brT c

j=bτ1,0T+2cwjT
−1/2∑j−1

i=bτ1,0T c+1(1 + δ1,T )j−1−iεi

= Op(T
−1/2)

p3 = −T−1c2wbτ2,0T c+1(1 + δ1,T )bτ2,0T c−bτ1,0T cT−1/2
∑bτ1,0T c

i=1 εi

−T−1c2wbτ2,0T c+1T
−1/2∑bτ2,0T c

i=bτ1,0T c+1(1 + δ1,T )bτ2,0T c−iεi

= Op(T
−1)

p4 = −T−1/2c2T−1/2
∑brT c

j=bτ2,0T+2cwj(1− δ2,T )j−bτ2,0T c−1{(1 + δ1,T )bτ2,0T c−bτ1,0T cT−1/2
∑bτ1,0T c

i=1 εi

+T−1/2
∑bτ2,0T c

i=bτ1,0T c+1(1 + δ1,T )bτ2,0T c−iεi}

−T−1/2c2T−1/2
∑brT c

j=bτ2,0T+2cwjT
−1/2∑j−1

i=bτ2,0T c+1(1− δ2,T )j−i−1εi

= Op(T
−1/2)

uniformly in r and so

T−1/2y∗brT c − T
−1/2

brT c∑
j=2

wjεj
p→ 0

uniformly in r.

Since wj is independent N (0, 1), we have that, conditional on the original sample,

T−1/2
brT c∑
j=2

wjεj ∼ N

0, T−1
brT c∑
j=2

ε2j

 .

Then, because

T−1
brT c∑
j=2

ε2j
p→
∫ r

0
ω (h)2 dh (A.2)
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it holds that

T−1/2
brT c∑
j=2

wjεj
w→p ωW

η (r)

= ωKη
0,0(r).

Thus we find that

T−1/2y∗brT c
w→p ωK

η
0,0(r).

Also, since it is easily shown that σ̂∗2τ = bτT c−1
∑bτT c

t=1 ∆y∗2t + op(1) and ∆y∗t = wtεt + op(1),

σ̂∗2τ = bτT c−1
bτT c∑
t=1

(wtεt)
2 + op(1)

p→ τ−1
∫ τ

0
ω (h)2 dh.

It then follows by the CMT that DF ∗τ
w→p ωL

η
0,0(τ) and that PWY ∗ w→p S

η
0,0.

A.3 Proof of Theorem 3

As the result simply relies on establishing stochastic orders of magnitude, we give the proof

without sub-sample demeaning. The pattern of heteroskedasticity present in εt has no effect

on these orders.

We first consider the behaviour of DF τ evaluated at τ2,0. Here

DF τ2,0 =
φ̂τ2,0√

σ̂2τ2,0/
∑bτ2,0T c

t=2 y2t−1

with

φ̂τ2,0 =

∑bτ2,0T c
t=2 ∆ytyt−1∑bτ2,0T c
t=2 y2t−1

.

Now,

∆yt =

{
εt, t = 2, ..., bτ1,0T c,
δ1yt−1 + εt, t = bτ1,0T c+ 1, ..., bτ2,0T c.

What follows draws heavily on results established in Harvey et al. (2014). In particular, we use

the results that y2bτ2,0T c−1 = Op(ST ),
∑bτ2,0T c

t=bτ1,0T c+1 y
2
t−1 = Op(ST ) and

∑bτ2,0T c
t=bτ1,0T c+1 εtyt−1 =

Op(S
1/2
T ) where ST = bτ1,0T c (1 + δ1)

2(bτ2,0T c−bτ1,0T c).

We have
bτ2,0T c∑
t=2

∆ytyt−1 =

bτ1,0T c∑
t=2

∆ytyt−1 +

bτ2,0T c∑
bτ1,0T c+1

∆ytyt−1

=

bτ1,0T c∑
t=2

εtyt−1 +

bτ2,0T c∑
bτ1,0T c+1

(δ1yt−1 + εt)yt−1

= δ1

bτ2,0T c∑
t=bτ1,0T c+1

y2t−1 +

bτ1,0T c∑
t=2

εtyt−1 +

bτ2,0T c∑
bτ1,0T c+1

εtyt−1
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so that

S−1T

bτ2,0T c∑
t=2

∆ytyt−1 = δ1S
−1
T

bτ2,0T c∑
t=bτ1,0T c+1

y2t−1 +Op(S
−1/2
T )

and hence

φ̂τ2,0 =
δ1S

−1
T

∑bτ2,0T c
t=bτ1,0T c+1 y

2
t−1 +Op(S

−1/2
T )

S−1T
∑bτ1,0T c

t=2 y2t−1 + S−1T
∑bτ2,0T c

t=bτ1,0T c+1 y
2
t−1

= δ1 +Op(S
−1/2
T ).

Also,

σ̂2τ2,0 = (bτ2,0T c − 2)−1
bτ2,0T c∑
t=2

(∆yt − φ̂τ2,0yt−1)
2

= (bτ2,0T c − 2)−1
bτ1,0T c∑
t=2

(εt − φ̂τ2,0yt−1)
2 + (bτ2,0T c − 2)−1

bτ2,0c∑
t=bτ1,0c+1

{(δ1 − φ̂τ2,0)yt−1 + εt}2.

Now,

(bτ2,0T c − 2)−1
bτ2,0T c∑

t=bτ1,0T c+1
{(δ1 − φ̂τ2,0)yt−1 + εt}2 = (δ1 − φ̂τ2,0)

2(bτ2,0T c − 2)−1
bτ2,0T c∑

t=bτ1,0T c+1
y2t−1

+(bτ2,0T c − 2)−1
bτ2,0T c∑

t=bτ1,0T c+1
ε2t

+2(δ1 − φ̂τ2,0)(bτ2,0T c − 2)−1
bτ2,0T c∑

t=bτ1,0T c+1
yt−1εt

= (bτ2,0T c − 2)−1
bτ2,0T c∑

t=bτ1,0c+1
ε2t +Op(T

−1)

= Op(1)

while

(bτ2,0T c − 2)−1
bτ1,0T c∑
t=2

(εt − φ̂τ2,0yt−1)
2 = (bτ2,0T c − 2)−1

bτ1,0T c∑
t=2

ε2t

+φ̂
2

τ2,0(bτ2,0T c − 2)−1
bτ1,0T c∑
t=2

y2t−1

+φ̂τ2,0(bτ2,0T c − 2)−1
bτ1,0T c∑
t=2

yt−1εt

= φ̂
2

τ2,0(bτ2,0T c − 2)−1
bτ1,0T c∑
t=2

y2t−1 +Op(1)

= Op(T )
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so σ̂2τ2,0 = Op(T ). This gives

DF τ2,0 =
δ1 +Op(S

−1/2
T )√

Op(T ).Op(S
−1
T )

such that DF τ2,0 diverges to +∞ at a rate T−1/2S1/2T . As a consequence, PWY diverges to

+∞ at a rate as least as fast as T−1/2S1/2T = bτ1,0T 1/2c (1 + δ1)
(bτ2,0T c−bτ1,0T c).

Next, it is suffi cient to consider the behaviour of DF ∗τ for τ ∈ (τ1,0, τ2,0]. Here,

bτT c∑
t=2

∆y∗t y
∗
t−1 =

bτT c∑
t=2

wt∆yt

t−1∑
j=1

wj∆yj

=

bτ1,0T c∑
t=2

wt∆yt

t−1∑
j=1

wj∆yj +

bτT c∑
t=bτ1,0T c+1

wt∆yt

bτ1,0T c∑
j=1

wj∆yj +

t−1∑
j=bτ1,0T c+1

wj∆yj


=

bτ1,0T c∑
t=2

wtεt

t−1∑
j=1

wjεj +

bτT c∑
t=bτ1,0T c+1

wt∆yt

bτ1,0T c∑
j=1

wjεj +

t−1∑
j=bτ1,0T c+1

wj∆yj


=

bτT c∑
t=bτ1,0T c+1

wt∆yt

t−1∑
j=bτ1,0T c+1

wj∆yj + op(.)

= δ21

bτT c∑
t=bτ1,0T c+1

wtyt−1

t−1∑
j=bτ1,0T c+1

wjyj−1 + op(.)

where op(.) notation refers a term which has a smaller order in probablility than the leading

term. In a similar fashion we find

bτT c∑
t=2

y∗2t−1 = δ21

bτT c∑
t=bτ1,0T c+1

 t−1∑
j=bτ1,0T c+1

wjyj−1

2 + op(.).

Using the fact that w2bτT c−1y
2
bτT c−2 = Op(S

′
T ) where S′T = bτ1,0T c (1 + δ1)

2(bτT c−bτ1,0T c), we

may show that
∑bτT c

t=bτ1,0T c+1(
∑t−1

j=bτ1,0T c+1wjyj−1)
2 = Op(S

′
T ). Likewise, since

wbτT cwbτT c−1ybτT c−1ybτT c−2 = Op(S
′
T ), it can be shown that

∑bτT c
t=bτ1,0T c+1wtyt−1

∑t−1
j=bτ1,0T c+1wjyj−1 =

Op(S
′
T ). Hence,

φ̂
∗
τ =

∑bτT c
t=2 ∆y∗t y

∗
t−1∑bτT c

t=2 y∗2t−1

=
Op(S

′
T )

Op(S′T )

= Op(1).
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Also,

σ̂∗2τ = (bτT c − 2)−1
bτT c∑
t=2

(∆yt − φ̂
∗
τyt−1)

2

= (bτT c − 2)−1(δ1 − φ̂
∗
τ )2
bτT c∑
t=2

y∗2t−1 + op(.)

= (bτT c − 2)−1Op(1)Op(S
′
T ) + op(.)

= Op(T
−1S′T ).

So,

DF ∗τ =
φ̂
∗
τ√

σ̂∗2τ
/∑bτT c

t=2 y∗2t−1

=
Op(1)√

Op(T−1S′T )Op(S
′−1
T )

= Op(T
1/2)

and, consequently, PWY ∗ = Op(T
1/2).
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Table 3. Tests for stationary volatility in commodity prices, 2000-2013

HKS HR HCVM HAD

Monthly real series

Brent oil 0.978 1.090 0.339 2.277∗

WTI oil 1.209 1.309 0.496∗∗ 3.276∗∗

Gold 1.751∗∗∗ 1.751∗∗ 1.037∗∗∗ 6.852∗∗∗

Silver 1.578∗∗ 1.589 1.088∗∗∗ 6.946∗∗∗

Platinum 1.341∗ 1.341 0.585∗∗ 3.869∗∗∗

Aluminium 1.025 1.215 0.325 2.170∗

Copper 1.368∗∗ 1.504 0.641∗∗ 4.206∗∗∗

Weekly nominal series

Brent oil 2.228∗∗∗ 2.405∗∗∗ 1.835∗∗∗ 12.389∗∗∗

WTI oil 1.892∗∗∗ 2.196∗∗∗ 1.057∗∗∗ 7.264∗∗∗

Gold 2.536∗∗∗ 2.536∗∗∗ 2.647∗∗∗ 17.240∗∗∗

Silver 2.029∗∗∗ 2.092∗∗∗ 1.795∗∗∗ 11.653∗∗∗

Platinum 2.219∗∗∗ 2.333∗∗∗ 1.334∗∗∗ 9.152∗∗∗

Aluminium 2.167∗∗∗ 2.536∗∗∗ 1.290∗∗∗ 8.476∗∗∗

Copper 2.842∗∗∗ 3.210∗∗∗ 2.183∗∗∗ 14.533∗∗∗

Notes: ∗, ∗∗ and ∗∗∗ denote rejection at the 0.10-, 0.05- and 0.01-
level, respectively. Critical values for the HKS , HR, HCVM and
HAD tests are given in Shorack and Wellner (1987): Table 1,
p. 413; Table 2, p. 144; Table 4, p. 147 and Table 5, p. 148;
respectively.

Table 4. Tests for a bubble in commodity prices, 2000-2013

p-values

PWY statistic PWY PWY ∗ PWY ∗
B

Monthly real series

Brent oil 2.073 0.008 0.097 0.034
WTI oil 2.230 0.006 0.105 0.043
Gold 3.306 0.000 0.095 0.074
Silver 4.809 0.000 0.067 0.026
Platinum 2.547 0.001 0.167 0.092
Aluminium 2.602 0.001 0.055 0.020
Copper 5.901 0.000 0.006 0.001

Weekly nominal series

Brent oil 3.112 0.000 0.043 0.024
WTI oil 2.986 0.000 0.093 0.059
Gold 4.223 0.000 0.056 0.052
Silver 5.899 0.000 0.024 0.019
Platinum 3.887 0.000 0.071 0.053
Aluminium 2.659 0.000 0.082 0.069
Copper 7.748 0.000 0.016 0.009

Note: p-values for PWY were obtained by simulating the finite sample
distribution of PWY for T = 168 and T = 731 for monthly and
weekly data respectively, using 5,000 replications of a random walk
with homoskedastic IIDN(0, 1) innovations.
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(a) τσ = 0.3, T = ∞ (b) τσ = 0.3, T = 200

(c) τσ = 0.5, T = ∞ (d) τσ = 0.5, T = 200

(e) τσ = 0.7, T = ∞ (f) τσ = 0.7, T = 200

Figure 1. Asymptotic and finite sample size of nominal 0.05-level tests: single volatility shift;
PWY : - - - , PWY

∗: , PWY
∗

B

: – –
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(a) Double volatility shift, T = ∞ (b) Double volatility shift, T = 200

(c) Logistic smooth transition in volatility, T = ∞ (d) Logistic smooth transition in volatility, T = 200

(e) Trending volatility, T = ∞ (f) Trending volatility, T = 200

Figure 2. Asymptotic and finite sample size of nominal 0.05-level tests:
PWY : - - - , PWY

∗: , PWY
∗

B

: – –
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Brent oil: levels Brent oil: first differences

WTI oil: levels WTI oil: first differences

Gold: levels Gold: first differences

Silver: levels Silver: first differences

Figure 3(a). Monthly real commodity prices, 2000-2013
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Platinum: levels Platinum: first differences

Aluminium: levels Aluminium: first differences

Copper: levels Copper: first differences

Figure 3(b). Monthly real commodity prices, 2000-2013
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Brent oil: levels Brent oil: first differences

WTI oil: levels WTI oil: first differences

Gold: levels Gold: first differences

Silver: levels Silver: first differences

Figure 4(a). Weekly nominal commodity prices, 2000-2013
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Platinum: levels Platinum: first differences

Aluminium: levels Aluminium: first differences

Copper: levels Copper: first differences

Figure 4(b). Weekly nominal commodity prices, 2000-2013
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