Center for Social and Economic Research

Milan Ščasný

WP9: Quantification of Environmental Benefits Methodology, Inputs Needed & Output Planned

DEFINE Kick-off project meeting

- WP Objectives and idea
- Methodology
- Applications
- Our approach in DEFINE
- What goes in and what goes out?

- To quantify external cost of electricity generation
- To quantify external cost of electric vehicle use
- To make a soft-link between environmental impact assessment on one side, and a household-level microsimulation model and the macro model

Our concept

- We are NOT analysing environmental *pressures* (emission) nor *state* (concentration) but aiming at *impact* (damage/benefit)
- Damage is expressed in terms of external costs and thus in monetary terms
- Utilise a theoretically sound method, i.e. be in line with welfare economics in our quantification
- Direct comparison with economic costs that allows to perform more complex welfare analysis

Methodology

- ExternE project series
 - ExternE= Externalities of Energy launched in 1991, financed by DG Research within the Joule program, then within the FPs

Scope

- airborne pollutants from power plants
- development of the Impact Pathway Approach
- damage associated with certain process depends on
 - technology
 - character of operation
 - site (location)
 - 🗸 time
 - scope of fuel cycle

bottom-up approach

for complex pathways> 'impact pathway approach'

Impact pathway approach 4 Steps

Step 1: Get Data

Emission

- airborne pollutants: SO2, NOx, PM2.5, PM10, NH3, NMVOC
- GHGs
- noise (db)

Technology data

- flue gas, fuel consumption, location

Output data

kWh, GJ, vkm etc.

Step 2: Athmospheric dispersion To derive marginal concentrations

Step 3: From dose to response

Valuation is possible only if a reliable (concentration-) response function is known

Review of CRF/DRF/ERF from the ExternE projects

- respiratory & cardiac HA, MRAD, lower respiratory symptoms, work loss days, chronic bronchitis etc. --: ozone & PM
- premature mortality --: ozone, PM, As, Pb, Cd
- cancers (carcinogens) --: benzene, As, Cd, Cr-IV, Ni, PCB,...
- development toxicity (neurotoxicants), dose toxicity, sensitisation, fertility --: Pb, metyl-Hg, other REACH chemicals

Step 3: # Receptors

Step 3: Cumulative response

Last step: Attach Monetary Value on the (Physical) Impacts

elicit preference structure of the population \rightarrow

How much are you willing-to-pay to avoid adverse impact (or get desired impact) ?

market price

 \rightarrow building materials, crops, medical treatment costs

non-market valuation

→premature death, health risk, landscape amenities,....

- Ex.: Health impacts valuation within the ExternE

- Cost of illness (medical treatment costs) plus
- Loss of productivity (due to sickness)
- WTP for suffer, dis-comfort and other inconveniences
- WTP for changing a risk of dying (i.e. Value of a Statistical Life)

Climate Change Impacts

Market price

• EU-ETS (8-June-2012): EUA €6.65 & EUA/CER €3.39 for Dec2012

Marginal Abatement Costs

- ExternE: 19 \in_{2000} (MAC for Europe to reach the Kyoto Protocol for 2008-2012)
- Meta-Analysis : 24€ (mean), 16€ (median) for 2025 by Kuik, O. (2007)
- IAM Review: €27 (std €15) for 550ppm or €68 (std 43) for 450ppm in 2030 by ICCGOV

Social Costs of Climate Change

- marginal damage per t of C as the discounted difference in the two flows of real cost and benefits over long time period
- based on a review of Integrated Assessment Models such as FUND, DICE, PAGE, WITCH, etc. within FPs projects (e.g., NEEDS, ADAM, ClimateCost)

Applications **External Costs of Electricity Generation** Kč per kWh (2008 prices), the Czech republic

Applications Impact categories Energy Generation Reference Technologies, CZ

Applications Full Cost Assessment Energy Generation Reference Technologies

Applications External Costs of Transport passenger cars, in CZK per km

Applications: External Costs of Transport External costs in CZK/vkm (2008) per damage category in metropolitan area (above) and rural (below) area

Applications: External Costs of Transport External costs in CZK/vkm (2008) per pollutnat in metropolitan area (above) and rural (below) area

Source: Melichar and Máca (2010)

Applications External Costs of Transport passenger car EURO III 1.4-2.0 I, in €/100 vkm

Note: B30 - 30% biodiesel from rape; E5 - 5% bioetanol from wheat

Fuel cycle for transport

Our approach in DEFINE Electricity generation

- Take emission from the PE energy model
- Use default damage values per country of emission releases for
 - NOx, SO2, PM2.5, PMcoarse, NMVOC, NH3, trace pollutants, GHGs
 - as aggregate or per main impact categories
- Run the EcosenseWeb tool, in collaboration with Charles University Prague, to quantify the impacts for a few power plants
 - for the pollutants as above, but for more impact categories and including regional distribution of the impact

Assess benefits over study time

if needed, conduct benefit transfer

Our approach in DEFINE Electricity generation II

If emission is not endogenous variable in the energy model

- base the assessment on energy output per technology and actual emissioncoefficient per technology
- assume a trend in the emission-coefficient over time
- derive emission per year implicitly
- Use default damage values per country of emission releases for, or run the EcosenseWeb tool for a few power plants
- Assess benefits over project time...

Our approach in DEFINE Electric vehicles

- Replacement of non-electric by electric \rightarrow avoided external costs
- Take emission from WP5, i.e. the emission intensity per technology multiplied by the stock of given technology
 - well-to-tank: non-electric YES, electric NO (incl. in electricity generation impact)
 - tank-to-wheel: non-electric YES, electric NO (no emissions)
 - non-environmental TTW: ignore (the impact does not vary across technologies)
 - down-stream impacts: ignore (the impact does not vary across technologies)
 - transport infrastructure: ignore (the impact does not vary across technologies)
- Impact assessment then same as in the case of electricity generation, but
 - if detailed information about vehicle use is available, for instance use in urban vs.
 rural areas, damage assessment can take that into account
 - avoid double-counting

Our approach in DEFINE Electric vehicles: scope?

Resource	uel	Gasoline, Diesel, Naphtha (2010 guality)	CNG	DdT	Hydrogen (comp., liquid)	Synthetic diesel (Fischer- Tropsch)	DME	Ethanol	MT/ETBE	FAME/FAEE	ОЛН	Methanol	Electricity	Heat
Crude oil		Х												Х
Coal					X ⁽¹⁾	X ⁽¹⁾	Х					Х	Х	
Natural gas	Piped		Х		X ⁽¹⁾	X	Х					X	Х	X
	Remote		X ⁽¹⁾		X	X ⁽¹⁾	X ⁽¹⁾		X			X	Х	Х
LPG	Remote ⁽³⁾			Х					Х					
Biomass	Sugar beet Wheat							X	x					
	Wheat straw							x						
	Sugar cane							X						
	Rapeseed									x	х			
	Sunflower									X	х			
	Soy beans									X				
	Palm fruit									X	х			
	Woody waste				х	X	х	X				X		X
	Farmed wood				X	X	х	X				X	х	X
	Organic waste		X ⁽²⁾										X	X
	Black liquor				X	X	Х					X	Х	
Wind													Х	Х
Nuclear													Х	Х
Electricity					Х									

Source: JRC, CONCAWE, EUCAR (2011: 14)

Our approach in DEFINE What is NOT included in our impact assessment

Electricity generation

- Impact, so far, not covered by the ExternE
- some impacts, such as effect due to transmission lines, energy security might be discussed (based on literature review)

Use of vehicle

- dispersion of emission released from non-electric vehicles
- down-stream effects (is scrapping an e-vehicle relatively more damaging?)
- up-stream externalities (production of a vehicle)?
- non-environmental benefits, such as congestion, traffic accidents, noise annoyance

Input requirements

- Inflows from other WPs; per year and per country (DE, AT, POL)
 - Electricity generation
 - emissions per kWh, or
 - kWh output per technology, but the emission-coefficients (t per kWh) over time need to be carefully examined
 - Vehicles
 - vehicle stock per technology
 - emission parameters per technology (TTW + WTW)
 - *ideally, use* of each technology in urban and rural areas

Input requirements Brief review

Brief review of other WPs

- WP4: development of the vehicle stock in Austria and Germany up to 2030 for different scenario, month 14 [but not for Poland]
- WP4: energy demand of the transport sector and additional electricity demand generated by electric vehicles up to 2030, month 14 [is Poland included in WP10?]
- WP5: calculation of the emissions (covering GHGs, CO, NOx, particles, SO2, N2O), month 25
 [but not PMs]
- WP5: Emission reduction potential for GHG emissions and air pollutants in Austria and in Germany up to 2030 (month 25) [but not for Poland]; UBA has access to the expert version, presenting the most recent vehicle emission data in Europe [including Poland?]

Other sources

- JRC-CONCAWE-EUCAR 2011 Reports (version 3c)
- MEFA db CZE
- TREMOVE

WP9 outputs

External costs

- benefits (avoided damage) expressed in monetary terms (e.g. Euro 2000)
- however, most impacts are non-market goods → are outside of national accounts and thus not included in SAM

Soft-link

environmental benefits

(damage per ton of emission) (damage per kWh per technology)

macro model of the economy

(emissions is endogenous variable) (kWh per technology is endog.var.)

environmental benefits

(damage per vkm per technology) (indirect damage per vkm per technology) household's vehicle ownership model (vehicle stock and vkm per technology)

\rightarrow

 \rightarrow

Timeplan

		2012							2013											2014											
		М1	M2	М3	M4	M5	M6	M7	M8	М9	M10	M11	M12	M1 3	M14	M15	М16	5M17	M18	M19	M20	M21	M22	M23	3M24	M25	5M26	M27	M28	M29	M30
		May	June	yluC	Aug	Sep	Oct	Νον	Dec	Jan	Febr	Mar	Apr	Мау	June	July	Aug	Sep	Oct	Nov	Dec	Jan	Febr	Mar	Apr	May	June	yluC	Aug	Sep	Oct
WP1&6	IHS+		WS1			WS2	te	op-de	own		WS3		b	otton	ı-up				WS4	cc	alibr.			v	ralid .	si	imul.				
WP2&7	DIW+ESEA	START							PEM structure valid data ready									study													
WP8.2	CASE										STA	RT								ws				S/ ene	AM erdat	c	ases	tudy			
WP5	UBA+OEI															STA	RT	е	missi	ion re	educ	tion	poter	ntial	in A	[+DE					
WP9	CASE																		STA	RT						ех	ctern	ality	sof	tlink	

Thank you for your attention

Dr. Milan Scasny

CASE affiliates Charles University Environment Center <u>milan.scasny@czp.cuni.cz</u>

Task 8.2

Parameter of household demand for vehicles for macro model

planned for month 24

Social Accounting Matrix for Poland

- IOT 2005 compiled by the Polish Statistical Office
- IOT 2010 due the end of 2014
- Data on the electricity and energy sectors of Poland necessary for scenario applications of the general equilibrium model (WP6/WP10)
 - data available: generation capacities for specific techs, future energy mix, historic price and consumption of electricity, length and load of line capacity of Polish grid

Deliverable

in month 24

Dis-aggregation of extermality Ex.: Health effects of power sector in CZE

	Number of		Percent of		
	cases	mii. Euro	damage		
'Acut' YOLL	17	1.02	0.1%		
'chronic' YOLL	23 681	947.43	65.7%		
Bronchodilator adults	152 398	0.15	0.0%		
Bronchodilator children	16 303	0.02	0.0%		
Cardiac hosp.admissions	175	0.35	0.0%		
Cases_Infant_Mort	3	8.30	0.6%		
Cough	79 570	3.02	0.2%		
Chronic bronchitis	750	150.07	10.4%		
Lower resp. symptoms adults	1 324 790	50.34	3.5%		
Lower resp. symptoms children	842 390	32.01	2.2%		
LRS cough	13 690	0.52	0.0%		
Minor RAD	1 399 710	53.19	3.7%		
NetRAD	348 732	45.35	3.1%		
Respir. HA adults65	15	0.03	0.0%		
Respir. HA all	284	0.57	0.0%		
Work loss days	506 120 (≈2,300 manyears)	149.27	10.4%		
SUM		1 441.63			

External Costs of Passenger Transport Technology, in CZK/km

Different social planner perspective on valuation of morbidity impacts

